Manual

Toolbox

Order-No.: VIPA CP4-HB74E
Rev. 00/33

Subject to change to cater for technical progress.

Subject to change to cater for technical progress.

Manua Toolbox

The information contained in this manual is supplied on an "as-is" basis and is not guaranteed in any
way. The contents is subject to change without notice. The hardware (software) described in this
manual is supplied on the basis of a general or a specific license (company license) and it may only
be used or copied for purposes meeting the conditions of this license. We will claim compensation
for damages.

Any information that became available after this manual was printed is provided in afile located on
the accompanying floppy disk. To read the floppy (if it was supplied) insert the VIPA driver diskette
#1 into your drive A and enter the following command:

TYPE README.TXT
Please use the 'NOTEPAD' to view the file in Windows®, and in OS/2 you can use 'E".

© Copyright 2000 VIPA, Gesellschaft fur Visualisierung und Prozef3automatisierung mbH,
Ohmstralie 4, D-91074 Herzogenaurach

Tel.: +49 (91 32) 744-0
Fax.: +49 (91 32) 744-144
EMail: info@vipa.de

Hotline: +49 (91 32) 744-114

All rights reserved

VIPA® isaregistered trade mark of VIPA company for visualization and process automation Ltd.

SIMATIC® is aregistered trade mark of Siemens AG

STEP® 5 is aregistered trade mark of Siemens AG

Turbo Pascal and Turbo C are registered trademarks of Borland International, Inc.

WINDOWS and WINDOWS NT are registered trademarks of Microsoft Corporation

Microsoft C is aregistered trademark of Microsoft Corporation

Any other trade marks referred to in the text are the trade marks of the respective owner and we acknowledge their registration.

Subject to change to cater for technical progress.

Manual Toolbox

About this manual

This manual describes the Utility-Software for the CP386 (CP3) and CP486 (CP4) modules.

As operating system we recommend MS-DOS 5.00 or later. The installation and the description for
this operating system is available from the respective manual supplied by Microsoft or. in the
advanced manuals available from MARKT UND TECHNIK and DATA BECKER. Information on
system related functions may be obtained from the book PC INTERN available from DATA
BECKER. VIPA has developed utilities and tools for operating the CP under the MS-DOS
operating system. The software described in these chapters is supplied on VIPA diskette CP4-
SW593.

Overview

The drivers described in chapters 1, 2 and 3 provide the means for communications between the CP
module and the PLC. These three drivers may be used in conjunction with any CP3 or CP4 module.

The first three chapters describe the installation of the respective driver and the communication
functions provided by the driver. Here you can also find the interfacing for PASCAL (not
CP486NT) and C and a description of the operation with WINDOWS,

Chapter 1. Linkagewith PLC by CP386COM

This chapter contains the discription of the CP386COM-driver. This driver
supports only single-prozessor operations with block to block requests.

Chapter 2. Linkagewith PLC by CP486COM

The CP486COM-driver that is the subject of this chapter was developed from the
CP386COM. This driver supports multi-processor operations. Block requests are
processed according to the FIFO-principle.

Chapter 3: Linkagewith PLC by CP486NT

This contains the description of the CP486NT. This driver is specific to
WINDOWS NT. The range of functions is nearly identical to those of the
CP486COM.

Chapter 4: MS-DOS-utilitiesfor Solid-state disk-operation

Chapter 4 contains a description of the solid-state disk driver and its integration
into the system. The chapter also describes the programs required to operate a
solid-state disk, e.g. the formatting, read and write programs.

Chapter 5: Auxiliary programs

This chapter contains a description of the support programs required for coupling
different computers and to display the process image. It also contains a note on the
test-program for the system that is available as an option.

Subject to change to cater for technical progress.

Manua Toolbox Contents

Contents
1 LINKAGE WITH PLC BY CP386COMccciiiiiiiiiiee e 1-1
1.1 General deSCHIPLION ..uuuii it e e et e e e e e e e e e aaa e e e eeeeeeeane 1-1
1.1.1 MS-DOS DrIVEI PrOQIamcccuuiiiiiiiieeeeeieeeeiiiiie s s e e e e e e eeeesaanns e e e e e e eeeasnnnnnnaeens 1-2
1.1.2 Driver INSTAllatiON et 1-2
1.1.3 Driver options (Revision 1.6 and fOllOWING):uvviiviiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeee 1-3
1.1.4 RESEIVEA INEITUPES ...eueiiee ettt e et e e e e e e e e e tab e e e e 1-4
1.1.5 Different Data Representation in MEMOIYcoovvviiiiiiiiiiiii e 1-5
1.2 PLC Jobs for CP (Functions for Bank 0 and 1).......ccccoovviiiiiiiiiiiiiiiceceiie e, 1-6
1.2, 0 OVEBIVIBW....i ettt ettt e e e e e e e et ettt e e e e e e e e e et eaata e e e e e e e e e eeeebnnnn e nns 1-6
1.2.2 Interface concept for banks 0 and L........ccoovvviiiiiiiiiiiiiieec e 1-7
1.2.3 Processing a WIite JODooooiiiiii e 1-7
1.2.4 Processing a Read JOD:c.oooiiiiiiii e 1-8
1.2.5 Parameterization of Handling ModUIEsS:.............oiiiiiiiiiiiiii e 1-9
1.2.6 FUNCLION DESCIIPLIONciiiiiiiieeiiiiee e et e e e e e e e e e e e ee s 1-20
1.3 CP-Jobs for PLC (Functions for Bank 2,3 and 7)ccceeiiiiiiiiiiiiiiiiiiieeeee 1-35
I A @ AV V= PP ROT 1-35
1.3.2 Installation of Bank Software for Linking PLC and CPcccovvvvvviiiiieeeeen. 1-36
1.3.3 Driver Functions via Software INterruptccoovveeiiiiiiiiiiiii e 1-38
1.3.4 Interface for Turbo-Pascal (from Version 4.0)cccuvviiiiiiieeiiieeiiiiee e 1-48
1.3.5 Interface to Turbo-C (2.0 and C++ from 1.0), Microsoft-C 6.0............c........... 1-60
1.3.6 Storage of Process Images t0 Bank 7 ... 1-72
1.4 Operation of the CP386COM in a WINDOWS environmentcccceevvvevennnee. 1-73
2 LINKAGE WITH PLC BY CP486COMccoiiiiiiiiiieieeeeeeeeeeeee e 2-1
2.1 General deSCITPTION ..o e e e e e e e e e e enna s 2-1
2.2 Installation of the page frame software............coooiiiiiiiiii e, 2-4
2.2.1 PLC-side: handler MOAUIEScooi i 2-4
2.2.2 CP486-side: MSDOS driver PrOgraimcceeeeeeeeeeeuuunnisseeeeeseeesssnnnaeaeaeaseesnnnn 2-6
2.2.3 Various representations of data in Memory...........oouuuiiiiiniiiiieiiiiiiie e 2-8
2.3 CP486-Requests for PLC (Page Frame 2 and 7 FUNCLIONS)cceeviiieeiiieeeeiinnes 2-9
pZ T I @Y1 V1 PP PP PPPPPPPPP 2-9
2.3.2 Driver functions controlled by software interruptS..........cccovveeiiiiiiinieeeeeeeeeiies 2-10
2.3.3 Turbo-Pascal interface (from Version 4.0)..........coouviiiiiiiieiiiiiieiieee e 2-20
2.3.4 Turbo-C Interface (2.0 and C++ from 1.0), Microsoft-C 6.0............ccccceeeeeennn. 2-36
2.4 Operation of the CP486COM in a WINDOWS environmentc..cceeevvvvennnnns 2-51

Rev. 00/33 UVIPA i

Contents Manua Toolbox

3 LINKAGE WITH PLC BY CPA8BONTuuuuuuuutiuuiuiiuiiiuiuuiuneueuninssnrennnsessennsenneseseeeeenans 3-1
3.1 General deSCITPTION . it e e e e e e e e e e e e e e 3-1
3.2 Installation of the page frame softwareceeiiiiiiiiiiiii 3-2

3.2.1 PLC-side: handler MOdUIES........ccoooiuiiiiiii e 3-2
3.2.2 Various representations of data in Memoryccccovveeeivieeiiiiiiiee e 3-4
3.3 Operation of the CP486COM in a Windows-NT environmentccceeeene 3-5
3.3.1 Installing the page frame driver into WIindows-NTcciiiiiiiiiieeiiiiinnn, 3-6
3.3.2 Microsoft-Visual C V2.0, V4.0 INterface ... 3-7
3.3.3 Description Of the StIUCIUIEScvvueiiiiiieeeieee e 3-19
3.3.4 General definitions and definitions of €rrors ..., 3-21
3.3.5 SamPIE PrOGramMcoiiieiiiiiie e 3-27

4 MS-DOS-UTILITIES FOR SOLID-STATE DISK OPERATIONSccooiiiiiiiiiiiiinans 4-1
4.1 Solid-state diSK AriVEr ..., 4-1
4.2 Formatting program for the SRAM solid-state diSK..........cccccevvvvviiiiiiiiiiiiieeeee, 4-4
4.3 Solid-state diSK gEeNEIatOr.........uuuiiii e e e e e e eees 4-5
4.4 Solid-state disk [08der ... 4-6
4.5 Sample applications for the solid-state disSK........ccccovvvviiiiiiiiiiiiec e 4-8

4.5.1 Implementing a solid-State diSK............ccoviviiiiiiiiiii e 4-8
4.5.2 Implementing a FLASH-PROM solid-state disKccouuuviiiiiiiiiiiiiiiiii. 4-9
4.5.3 Creating program memory using EPROM'Sccoooiiiiiiiiiiiiiee e 4-11
4.5.4 Creating a FLASH-PROM solid-state disk with MS-DOS solid-state disk...... 4-13

5 AUXILIARY PROGRAMSooititietieiitteeeteeeteeeeetteeeeeee et eeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeees 5-1

5.1 CPLINK program for coupling COMPULEISuiiiiiieiiiieeeiiee e 5-1
5.1 L GENEIA .. 5-1
5.1.2 FUNCHON AESCHPLIONeuttiiiii e ee ettt e e e e e et e e e e e e e e e e aeenna s 5-2
5.1.3 Interconnecting CabIeScooo e 5-4

5.2 Graphic display program for the PLC process image........ccoeeeeeeveveiiiiiiinneeeennn. 5-5

5.3 SYSTEM tEST PrOGIAIM ...ttt e et e e e e et e e e e et e e e eesn e e aeernaaaaeees 5-6

N £ = PP A-1
A LIST OF TADIES ..o A-1
[3 0T G PP B-1

’ UVIPA Rev. 00/33

1 Linkage with PLC by CP386COM

1.1 General description 1-1
1.1.1 MS-DOS Driver Program 1-2
1.1.2 Driver Installation 1-2
1.1.3 Driver options (Revision 1.6 and following): 1-3
1.1.4 Reserved interrupts 1-4
1.1.5 Different Data Representation in Memory 1-5

1.2 PLC Jobs for CP (Functions for Bank 0 and 1) 1-6
1.2.1 Overview 1-6
1.2.2 Interface concept for banks 0 and 1 1-7
1.2.3 Processing a Write Job 1-7
1.2.4 Processing a Read Job: 1-8
1.2.5 Parameterization of Handling Modules: 1-9
1.2.6 Function Description 1-20

1.3 CP-Jobs for PLC (Functions for Bank 2, 3 and 7) 1-35
1.3.1 Overview 1-35
1.3.2 Installation of Bank Software for Linking PLC and CP 1-36
1.3.3 Driver Functions via Software Interrupt 1-38
1.3.4 Interface for Turbo-Pascal (from Version 4.0) 1-48
1.3.5 Interface to Turbo-C (2.0 and C++ from 1.0), Microsoft-C 6.0 1-60
1.3.6 Storage of Process Images to Bank 7 1-72

1.4 Operation of the CP386COM in a WINDOWS environment 1-73

Manual Toolbox Linkage with PLC by CP386COM

1 Linkage with PLC by CP386COM

1.1 General description

Data transfer between CP and PLC is supported by handling modules on PLC side and by software
interrupts on CP side. Following routines are available:

Bank No | Function Operation on PLC side | Operation on CP side

Bank O PLC job: read datafrom CP Handling module (FB3) | Interrupt service routine
(PLC active)

Bank 1 PLC job: send datato CP (PLC | Handling module (FB3) | Interrupt service routine
active)

Bank 2 CP job: read datafrom PLC (CP | Cyclically called han- | Software interrupt
active) dling module (FB1)

Bank 3 CPjob: send datato PLC (CP Cyclicdly caled han- | Software interrupt
active) dling module (FB1)

Bank 7 Transfer process image to CP Cyclically called han- | Software interrupt or direct

dling module (FB1) access to bank

Tab. 1-1: Overview bank function by CP386com

Following data structures in the PLC can be accessed on CP side:

» single elementsin format byte, words and doublewords
DB, DX, markers, inputs, outputs, timer, counter, flag word

+ datablocks
DB, DX, FB, FX, OB, PB, SB, BA, BB, BT, BS

Following PLC accessesto CP are possible:
* thelinkage supports al types of MS-DOS device-oriented accesses.
 all jobsissued by the PLC are based on MS-DOS device functions.

Functions described below are available upward for CP386COM version 1.00 (Software CP4-
SW593 version 2.x) and handling module version 2.00 (CP4-SW977 and CP4-SW978 version 2.x).
The program CP386COM is named in the following description as COM-driver.

Rev. 00/33 VIPA 11

General description Manual Toolbox

1.1.1 MS-DOS Driver Program

For communication via banks between PLC and CP a specific communication driver must be loaded
in the CP. This driver is specific for the communication with the VIPA handling modules. The
driver supplies functions which are easy to handle. The user needs no detailed information
concerning structure and operation of the banks. The driver contains software to control al banks.
At the moment it currently supports:

e banksOand 1 (PLC active, CP passive).

* banks2und 3 (PLC passive, CP active)

e bank 7 (process image).
The driver automatically supports all functions for al banks, no further configuration is necessary
for particular banks.

1.1.2 Driver Installation

It is recommended to load the driver at the best during the start of the CP, that means already in
AUTOEXEC.BAT. Aswell alater cal is possible.

Notice, that as a rule , the handling modules for synchronization are called
during the restart. They just wait for a fixed time for a reaction of the CP.
Therefore PLC and CP remain unsynchronized if the driver is not started
within this time and no communication is possible.

Cal: CP386com.exe [/ini] [/txx] [/ixx] [/nots] [/7] [/h]

The driver is a resident program (TSR-Utility) and allocates about 26 KByte of main memory
(program and data). The driver can be loaded only once at atime. Any further call causes a message,
that the driver has already been instaled. A remova of the driver from man memory (de-
installation) is not pssible, thereto the CP has to be rebooted.

1-2 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.1.3 Driver options (Revision 1.6 and following):

/INI or /ini

With this option-switch the communication bank is initialized, pending jobs are stopped and the
whole bank iscleared. The driver isnot installed. Thisinitialization can be as often as necessary.

[Txx or /txx

This option specifies the timeout in seconds for the driver. The default timeout value is 10seconds.
Possible values for xx: 1sec .. 30sec

Default: 10sec

[1xx or [ixx

This option specifies the number of the software-interrupt for the communication via bank 2 and 3
(CP active mode).

Possible values: 78h, 7Ah .. 7Fh.
Default: 78h.

INOTSR or /notsr

Using this option when calling the driver in the command line causes the program to be installed
nonresident. The program will not be finished, no further DOS-commands can be entered or
programs can be started subsequently. This option is only meaningful, if communication ensues
exclusively via banks 0 and 1 (CP passive). By pressing the F10-key and subsequent confirmation
with"j" the driver will be removed again.

/?,/Hor/h
This option shows alist of al possible options of the driver.

exclusively and can be installed on these systems solely. Loading the driver on
different CP-systems, even on i386 or 1486 processor, causes an immediate
system-hang-up.

i The COM-driver is designed to work with CP-modules of the VIPA GmbH

Rev. 00/33 VIPA 13

General description Manual Toolbox

1.1.4 Reserved interrupts

The driver uses severa software interrupts for operation and communication with the applications
software of theCP-module:

INT 1Ch Timer-Interrupt and INT 28 DOS-Idle-Interrupt

The so called ticker-interrupt with number 1Ch, as well as the so called DOS-idle interrupt are
used for routine and cyclical check of the bank. By this, it is regularly checked, whether the PLC
tries to synchronize the banks recently. After executing the CP-specific functions, the initial
interrupt service routineis called.

INT 74h (IRQ 12):

The CP uses the hardware-IRQ 12, which occupies software-interrupt 74h. This interrupt will be
triggered, if BASP is active in PLC, or if the highest memory location of every bank (bytel023)
is written by the PLC. The usage of the interrupt permits fast reaction of the CP to a request by
the PLC. After processing the CP-specific functions the initial interrupt service routine is called.
In this manner, different devices can use IRQ 12.

INT 78h Service-Interrupt:

This interrupt is to be used by applications software in the CP to call functions of the driver, for
example data exchange with the PLC via banks 2 and 3. Different functions can be triggered by
corresponding assigment of the processor registers. If INT 78 is called with register values,
which areinvalid for the CP communication, theinitia interrupt service routineis called.

14 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.1.5 Different Data Representation in Memory
For the transfer of data between CP and PLC, the different representation of words and doublewords
(extended words) on CP and PLC (programmable controllers) has to be taken into account.

Unlike CP’s the PLC stores the datatype word in a different form in memory, High-Byte and Low-
Byte are stored reverse. In doublewords all 4 bytes are stored in exact reverse order. If data of type
word, doubleword is exchanged between PLC and CP, it’s quite natural that an interchange has to
be undertaken, otherwise data is wrong after transmission. As far this is possible in a meaningful
way the COM-driver processes this adaptation automatically.

For data exchange via banks 0/1 the user has to execute the interchange on its own, either on the CP
or on the PLC. The driver processes the interchange automatically for the banks 2/3 and bank 7 in
all cases.

Operation:
» During transmission of bytes no interchange takes place.
» During transmission of words High- Byte and Low-Byte are interchanged.
» During transmission of extended words all 4 bytes are reversed according to their order.

Datarepresentation in PLC (programmable controller):

Addressn Byte Representation Byte

Addressn High-Byte

Address n+1 Low-Byte Representation Word
Addressn High-Byte High-Word

Address n+1 Low-Byte High-Word

Address n+2 High-Byte Low-Word Repres. Doubleword

Address n+3 Low-Byte Low-Word

Datarepresentation in CP

Addressn Byte Representation Byte

Addressn Low-Byte

Address n+1 High-Byte Representation Word
Addressn Low-Byte Low-Word

Address n+1 High-Byte Low-Word

Address n+2 Low-Byte High-Word Repres. Doubleword

Address n+3 HighByte High-Word

Rev. 00/33 VIPA 15

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2 PLC Jobs for CP (Functions for Bank 0 and 1)

1.2.1 Overview

All PLC-jobs are transacted via banks 0 and 1. In this way the CPU can use series of MS-DOS-
functions. Die PLC-instructions are processed in background via interrupts, as soon as this driver is
being installed. In this way no additional software for the CP is necessary to operate the PLC-jobs.

The driver permits to call several MS-DOS system functions from the PLC. Hereby all parameters
and information are exchanged transparent between PLC and MS-DOS. The CP-driver software is
solely useful, to record the passed parameters correctly in the processor-register and to transfer the
returned values in a suitable form to the PLC. The only fundamental restriction is, that only one part
of the MS-DOS system functions can be called by the PLC. It’s not recommendable to cal al
functions by the PLC, because a great number of functions cannot be used meaningful by the PLC at
all. For further reasons a breakdown of the operating system can occur if a series of functions is
used in a non-adequate way. Therefore the driver software only supports such functions, which can
be used meaningful by the PLC. As function numbers for calling, exactly these function numbers of
the MS-DOS system function are to be specified.

Bank no. | Func. no. | Function
hex |dez
1 $0D |13 |resetall disk drives
1 $0E |14 |selectdisk drive
0 $19 |25 |determinecurrent disk drive
1 $39 (57 |setupdirectory
1 $3A |58 |deletedirectory
1 $3B (59 |changedirectory
0 $47 |71 |determinecurrent directory
1 $3C |60 |createfile
1 $5A |90 | createfilewithout overwriting
1 $3D (61 |openfile
1 $68 |[104 |writefilephysically to disk (without close)
1 $3E |62 |closefile
1 $41 |65 |deetefile
1 $56 |86 |renamefile
1 $42 (66 |setfilepointer
0 $C2 (194 |readfilepointer (no MS-DOS system
function) !!
0 $3F |63 |readfromfileor device
1 $40 |64 |writetofileor device
0 $2A |42 |read date
0 $2C |44 |readtime
1 $4B |75 |executeprogram
0 $30 |48 |determineMS-DOSversion
0 $59 |89 |read detailed error information
1 $FF | 255 | optional interrupt

Tab. 1-2: Overview MS-DOS system functions

1-6 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.2 Interface concept for banks O and 1

These two banks serve for reading and writing of data from or to the CP respectively. If the PLC
tries to read data from the CP or write data, it has to call the suitable handling module (SEND or
FETCH and RECEIVE). As aresult these handling modules provide a job unit in bank O or bank 1.
A maximum of one job can be entered in the banks O und 1 at a time. The size of the data to be
transferred ranges from one word up to 504 words. The structure of the job unit inside bank 0 and
bank 1 is absolutely identical. The distinction reading or writing is only due to the bank number.

On the CP-side, thereis ajob catalog deposit. As soon as the CP registers ajob in bank O or in bank
1, it takes the job number from the job unit and searches for the respective parameter block on its
side of the job catalog. In this catalog it is deposit, what should happen with the data, which e.g. will
be transferred from the PLC to the CP. The same happens for reading correspondingly, that means,
the CP searches in the bank by means of the job number, whether a catalog is filed on its side. If
yes, it makes the requested data available corresponding to its catal og.

1.2.3 Processing a Write Job

The PLC-applications software calls the handling module SEND. At this point the PLC programmer
sets the parameter for the job number, the transmission length in words, as well as the source of data
in the PLC. The handling module checks these specifications. If the specifications are correct, it
verifies, whether the bank is unassigned. Unassigned means, whether the bank reports a running job.
In this case the send job would be rejected. If the bank is avail able the handling module creates a job
unit and stores the data to be written subsequent to the job unit in the bank and sets the job status to
Job isrunning'. Thisis the identification for the CP, that a new job to be executed is waiting in the
bank. Accordingly, if the job is executable, the CP resets after executing the job, the identification
Job is running' and sets instead of one of the identifications ‘job finished with error' or 'job finished
without error'. If an error occurred, The CP reports a corresponding error code. With the handling
module CONTROL the user gets information about the status of the running job or the last job.

Rev. 00/33 VIPA 17

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.4 Processing a Read Job:

With the handling module FETCH the PLC-applications software passes a read job to the CP. This
handling module verifies as well as the handling module SEND the specified parameters, creates a
job unit in bank 0 and sets the status to ‘job is running'. By this the CP detects the existence of a new
job and executes this job, as already described under 'Write'. If the CP is able to supply these data, it
stores the data subsequent to the job unit in bank O and sets the status to finished without error.
Additionally it sets the identification to 'data for receive available. With the handling module
CONTROL the PLC applications software alows reading the status instantly. If the data is prepared
by the CP, it can be transmitted to the PLC via handling module RECEIVE. If this was successful,
the handling module RECEIV E resets the identification 'data for receive available'. From thistime a
new receive job can be entered by the PLC software.

In the case, that the PLC applications software tries to access a new write or read job, while a write
or read job is still running, the PLC applications software receives the identification 'interface busy".
This identifications are placed only by handling modules, they are of no account for the
communication with the CP.

Theinterface

A The interface (Data construct in banks) isn't suitable for multi processor
operating in the PLC in the current version. Always one and the same CPU
may access a CP in the PLC to every time!

1-8 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.5 Parameterization of Handling Modules:

The handling modules SEND (FB3), CONTROL (FB4), FETCH (FB5) and RECEIVE (FB6) are
parameterized as follows

If the bank number of the CP doesn't agree with then number in the handling
block, the CPU stopps with QVZ.

1.2.5.1 FB3 (SEND), send job to CP

This handling module transfers a data block of up to 504 words from a DB to the CP. For
identification purposes ajob number is aso sent to the CP. The handling module supplies the result
by means of a display word in a marker word to the PLC application program. Parameterization
errors are signalled via a marker byte. The handling module is directly and indirectly
parameterizable:

Modul e#FB3

BSTNAME #SEND

Bl B

BEZ #1 NSS D: KY

BEZ #A- NR D: KY

BEZ #DOSP D. KY

BEZ #ANZW D: KY

BEZ #QT/ N D. KY

BEZ #QANF D: KF

BEZ #QLAE D. KF

BEZ #PAFE A BY
Transfer parameters:
INSS. D KY IN Codeif direct or indirect parameterization

=0 direct parameterization viaformal operands
#0 indirect parameterization - transfer parameters are filed
in opened DB
SS number of basic bank (must be divisible by 8)

A-NR: D KY If direct parameterization |eft byte has the job number
(1..127) and right byte the function number for CP-driver.
If indirect parameterization, A-NR has the DW-no, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

DOSP: D KY DOS-parameter which is aso transferred at certain functions.
It can be a handle, an access or adrive-number.

Rev. 00/33 VIPA 19

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

ANZW: D KY left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MWO0..M\W198)
Display word can have following information at SEND status:
Bit .0=0
.1 job runs (job transferred without errors)
2=0
.3 job finished with error
AF-Nr. 2raisedto0
2rasedto 1l
2raisedto 2
2raisedto 3
Error numbers are dua encoded.
Error number 1 interface occupied by PLC (job runs)
6 interface occupied by CP

QT/N: D KY left byte: reserve
right byte: source module no. (2...255), DB-no. of
the module with data to be transferred is specified

QANF: D KF Initial addressin DB (0...32761), the DW-no. is specified from
which on the data to be transferred are filed in the DB.

QLAE: D KF Number of data words to be transferred (1...504)

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)
Error acknowledge message of handling module:
=0 noerror occurred
#0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
5 bank is not synchronized yet by the CP
10 invalidjob number (out of 1...127)
12 no DB open for indirect parameterization
13 source module is not existent
14 source module too short
15 QLAEisinvalid (out of 1...504)
16 DB for indirect parameterization too short
18 invalid source module no. (out of 2...255)
19 invalid sourceinitial address (out of 0...32761)
20 invalid marker word no. for ANZW (out of 0...198)

1-10 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

Attention: If the bank number of the CP does not coincide with the number parameterized
in this module, the CPU goes in stop with QVZ!

Parameter storagein aDB if parameterization isindirect:

A-NR points to the beginning

DL DR

INSS

A-NR F-NR

DOSP

ANZW

QT/N

QANF

QLAE

PAFE is not parameterizable indirectly
0 can be parameterized at all other formal operands (SS, DOSP, ANZW, QT/N, QANF, QLAE)

because these are not evaluated at indirect parameterization.

Scratch pads used: MB200-255

Rev. 00/33

VIPA

1-11

PLC Jobsfor CP (Functionsfor Bank 0 and 1)

Manual Toolbox

1.2.5.2 FB4 (CONTROL), show CP status

This handling module outputs the status of a write or read job. For identification purposes a job
number is also sent to the CP. The handling module supplies the result by means of a display word
in amarker word to the PLC application program. Parameterization errors are signalled via a marker
byte. The handling module is directly and indirectly parameterizable:

Modul e#FB4

BSTNAME #CONTROL
Bl B

BEZ #1 NSS D: KY
BEZ #A- NR D: KF
BEZ #DOSP D: KY
BEZ H#RWAW D: KY
BEZ #PAFE A: BY

Transfer parameters:

INSS:

A-NR:

DOSP:

KY IN Codeif direct or indirect parameterization
=0 direct parameterization viaformal operands
#0 indirect parameterization - transfer parameters are filed
in opened DB
SS number of basic bank (must be divisible by 8)

If direct parameterization right byte has the job number (0..127)
If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content

of the parameter is evaluated as word.

For job number 1...127, the status of the suitablejob is read.
For job number O, the status of the actually running or

finally executed job is read.

left byte: reserve
right byte: contains MW-no., where DOS-parameter is to be stored.

1-12

VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

RWAW: RW = Control for read job in bank 0
= Control for writejob in bank 1
AW contains the MW-no. where the display word is
to be stored (permitted are MWO0..MW198)
Display word can have following information:
Bit .0 receive meaningful
.1 job runs (job transferred without errors)
.2 finished without error
.3 job finished with error
Error number is dua encoded.
Error number 4 not defined job status on the CP
5 no job under this job number
6 interface occupied by CP
Bits 8-15 contain a probable error number of the CP

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)
Error acknowledge message of handling module:
=0 noerror occurred
#0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
4 bank is not existent (acknowledgement delay at bank access)
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
16 DB for indirect parameterization too short
20 invalid marker word no. for ANZW (out of 0...198)
21 invalid marker word no. for DOSP (out of 0...198)

Parameter storagein aDB if parameterization isindirect:

DL DR
A-NR points to the beginning INSS
A-NR
DOSP
RWAW

PAFE is not parameterizable indirectly

0 can be parameterized at all other formal operands (SS, RWAW) because these are not evaluated at
indirect parameterization.

Scratch pads used: MB200-255

Rev. 00/33 VIPA 1-13

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.5.3 FB5 (FETCH) data request to CP

This handling module transfers the read job to the CP. For identification purposes a job number is
also sent to the CP. The handling module supplies the result by means of a display word in a marker
word to the PLC application program. Parameterization errors are signalled via a marker byte. The
handling module is directly and indirectly parameterizable

Modul e#FB5
BSTNAME #FETCH
Bl B
BEZ #1 NSS D. KY
BEZ #A- NR D: KY
BEZ #DOSP D. KY
BEZ #LAE D: KF
BEZ #ANZW D. KY
BEZ #PAFE A: BY
Transfer parameters:
INSS: IN Codeif direct or indirect parameterization

=0 direct parameterization viaformal operands
#0 indirect parameterization - transfer parameters are filed
in opened DB
SS Number of basic bank (must be divisible by 8)

A-NR: If direct parameterization |eft byte has the job number
(1..127) and right byte the function number for CP-driver.
If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

DOSP: DOS-parameter which is also transferred at certain functions.
It can be ahandle, an access or a drive-number.

LAE: Number of data words to be read (corresponding to the passed
function no. for the DOS-driver, e.g. number of data which are
to be read from afile

1-14 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

ANZW: left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MWO0..MW198)
Display word can have following information at FETCH status:
Bit .0=0
.1 job runs (job transferred without errors)
2=0
.3 job finished with error (job was not transferred)
Error numbers are dua encoded.
Error number 1 interface occupied by PLC (job runs)
6 interface occupied by CP

PAFE: Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)
Error acknowledge message of handling module:
=0 noerror occurred
#0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
16 DB for indirect parameterization too short
20 invalid marker word no. for ANZW (out of 0...198)

Attenttion:

If the bank number of the CP does not coincide with the number parameterized in this module, the
CPU goes in stop with QVZ!

Parameter storagein aDB if parameterization isindirect:

DL DR
A-NR points to the beginning INSS
A-NR F-NR
DOSP
LAE
ANZW

PAFE is not parameterizable indirectly

0 can be parameterized at al other formal operands (SS, DOSP, LAE, ANZW) because these are
not evaluated at indirect parameterization.

Scratch pads used: MB200-255

Rev. 00/33 VIPA 1-15

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.5.4 FB6 (RECEIVE), receive data from CP

This handling modul e transfers a data block of up to 504 words from the CP to a DB. Before calling
the RECEIVE module, the CP must be informed by means of the FETCH handling module about
data which it requires. For identification purposes a job number is also sent to the CP. This job
number is returned together with the data.

The handling module supplies the result by means of a display word in a marker word to the PLC
application program. Parameterization errors are signalled via a marker byte. The handling module
Isdirectly and indirectly parameterizable:

Modul e#FB6
BSTNAME #RECEI VE
Bl B
BEZ #I NSS D: KY
BEZ #A- NR D. KF
BEZ #ANZW D: KY
BEZ #ZT/ N D. KY
BEZ #Z ANF D: KF
BEZ #ZLLAE D. KF
BEZ #PAFE A: BY
Transfer parameters:
INSS: IN Codeif direct or indirect parameterization

=0 direct parameterization viaformal operands
#0 indirect parameterization - transfer parameters are filed
in opened DB

SS number of basic bank (must be divisible by 8)

A-NR: If direct parameterization, A-NR has the job number (0..127).
For anumber 1...127 it is checked whether data being prepared
by the CP, have the same job number. Data are taken over
only if they have the same job number. In case of job number O,
data are taken over by the CPin any case.

If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

1-16 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

ANZW:

ZTIN:

ZANF:

ZLAE:

PAFE:

left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MWO0..MW198)
Display word can have following information at SEND status:
Bit .0=0
.1 job runs (still no data received from the CP)
.2 job finished without error (dataare in DB)
.3 job finished with error (error no. in Bit 4...7)
Error numbers are dual encoded.
Error number 2 no data existent
3 no data present for this job
4 not defined job status on the CP
6 interface occupied by the CP

left byte: reserve
right byte: target module no. (2...255), DB-no. of
the module with data to be transferred is specified

Initial addressin DB (0...32761), the DW-no. is specified from
which on the data to be transferred are filed in the DB.

Number of datawords (1...504) at least to be transferred,
CP passes only so many datawords as it also supplies.
Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)

Error acknowledge message of handling module:

=0 noeror occurred

#0 error occurred, error number in PAFE-Byte:

3 basic bank number is not divisible by 8

4 bank not existent (acknowl. delay at access)

5 bank is not synchronized yet by the CP

10 invalidjob number (out of 1...127)

12 no DB open for indirect parameterization

13 source moduleis not existent

14 source module too short

15 ZLAEisinvalid (out of 1...504)

16 DB for indirect parameterization too short

18 invalid target module no. (out of 2...255)

19 invalid target initial address (out of 0...32761)

20 invalid marker word no. for ANZW (out of 0...198)

Rev. 00/33

VIPA 1-17

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

Attention:

Error number 4 in PAFE is dedicated for future improvements. In the moment, it is generally not
possible to recognize QVZ via software in the CPUs for the AG115. In this version, the CPU goes
in QVZ in stop, if the bank number of the CP does not coincide with the number being
parameterized in this module.

Parameter storagein aDB if parameterization isindirect:

DL DR
A-NR points to the beginning INSS
A-NR
ANZW
ZT/N
ZANF
ZLAE

PAFE is not parameterizable indirectly

0 can be parameterized at al other formal operands (SS,, ANZW, ZT/N, ZANF, ZLAE) because
these are not evaluated at indirect parameterization.

Data storage in a DB:

DL DR
ZANF points to the beginning A-Nr F-Nr
No. of word being read

Data being read by the CP
arefiled from here on

Scratch pads used: MB200-255

1-18 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.5.5 Parameterization of File Accesses via Handles

The COM-driver alows full access to all drives of the CP and supports access to directories. For
every file access a drive and/or directory name can be specified and the same rules are valid, as
known from MS-DOS.

To access files under MS-DOS numbers, the so called handles are used. The amount of available
handles and herewith the maximum number of open files at the same time is specified by the entry
FILES = n in the CONFIG.SY S. We recommend to set the FILES-parameter at a minimum of 20,
better however to 25 or 30.

By means of handles not only files on a mass storage, like hard disk, RAM disk or disk can be
accessed. MS-DOS offers the opportunity to access via handles so called devices as well, like
printer and seria interfaces. For a series of devices standard handles have aready been defined.
These devices need not to be opened before they are accessed. By direct read or write functions data
can be read or output. Thus the PLC can in easy way directly access printer, screen and keyboard of
the CP.

Predefined Standard-Handles

Handle Device access mode
00 standard-input (keyboard), read only

01 standard-output (screen), writeonly

02 standard-error (screen too), writeonly

03 standard-auxiliary (V24-interface), read and write
04 standard-printer (auxiliary), writeonly

1.2.5.6 File Names

Like already mentioned, file names can be specified as well with drive and/or path specification.
The CP software does not affect this. Directories are to be assigned, as usual, with a backdash
(ASCII-Code 92, 5C hex). The character can also be entered correctly with the PG. The maximum
length of a path specification is up to 64 characters. A file specification can consist of a maximum
of 2 characters for the disk drive specification, up to 64 characters for the path specification as well
as 8 characters for the file name and 3 characters for the extension, at the whole up to 78 characters.

Ist dso possible to use a fixed form for a file name, consisting of 8 characters, a point, and 3
characters for the extension. If the file name is shorter than 8 characters or the extension shorter
than 3 characters, it is possible to preset the positions not used with blanks (ASCII-Code 32, 20
hex).

For MS-DOS system functions, which need a file name as parameter, the file name must be closed
up with the character ASCII zero (ASCII-code 0). For this reason the file name should be terminated
with character ASCII-zero when afile name is passed from the PLC to the CP. If the file name is
odd-numbered, this is unconditionally required. As the handling modules can enter only a block of
words into a bank, it is necessary to fill up the file name with ASCII zero to an even-numbered
length to achieve a block of words. If afile name is specified without terminating ASCII zero, the
CP software compl etes the missing zero.

Rev. 00/33 VIPA 1-19

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6 Function Description

1.2.6.1 Reset All Disk Drives (Disk Reset)

This functon enables to store all modified and non-saved file buffers physically to the drives.
Parameterization of FB3: F-Nr 13 ($0D hex)

1.2.6.2 Select Disk

Parameterization of FB3: F-Nr 14 ($0E hex)
DOSP Number of requested disk drive
Drive number 0 A:
1 B:
2 C.

For this function drive number O corresponds to drive A:, composite to other
functions like "get current directory".

1.2.6.3 Get Disk

The function outputs the number of the current (default) disk drive. The corresponding disk drive
character "A", "C", ... isfiled to byte 6.

Parameterization of FB5: F-Nr 25 (%19 hex)
Parameterization of FB6: ZT/N no. of DB for disk drive data
ZANF position of dataword in DB
ZLAE length of drive datain the DB in words (1)
Content of DB: Dw1 A-NR F-Nr
DW2 number of words being read
DW3 drive character drive number
A: 0
B: 1
C: 2

For this function drive number O corresponds to drive A:, composite to other
functions like "get current directory".

1-20 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.6.4 Create Directory

Parameterization of FB3: F-Nr 57 ($39 hex)

QT/N no. of DB with directory name

QANF position of directory name in the DB

QLAE length of directory name in the DB in words
Content of DB: DwW1 directory name

DW2

DW3
Note:

The directory name must be terminated with O-byte, if it is of odd-numbered length (is not necessary
for even-numbered length).

1.2.6.5 Delete Directory

Parameterization of FB3: F-Nr 58 ($3A hex)

QT/N no. of the DB with directory name

QANF position of directory namein DB

QLAE length of directory name in the DB in words
Content of DB: DW1 directory name

Dw2

DwW3
Note:

The directory name must be terminated with O-byte, if it is of odd-numbered Iength (is not necessary
for even-numbered length).

Specifying a disk drive in the directory name allows to delete a directory aso in a not logged-on
drive.

This function is finished with an error if the specified directory is the current directory or if the
specified directory contains files.

Rev. 00/33 VIPA 121

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6.6 Set Current Directory

Parameterization of FB3: F-Nr 59 ($3B hex)

QT/N no. of DB with the directory name

QANF position of directory namein DB

QLAE length of directory name in the DB in words
Content of DB: DwW1 directory name

DW2

DW3
Note:

The directory name must be terminated with O-byte, if it has an odd-numbered length (is not
necessary for even-numbered length).

Regard that the current drive cannot be changed by means of this function. The directory can be, of
course, affixed with a drive specification, but the current directory remains adjusted on the previous
value on the drive logged-on. Only when the directed drive is accessed e.g. by the function " Select
Disk", then the required driveis set.

1.2.6.7 Get Current Directory

Parameterization of FB5: F-Nr 71 ($47 hex)

DOSP disk drive number
Parameterization of FB6: ZT/N no. of DB with the directory name

ZANF position of directory namein DB

ZLAE length of directory name in the DB in words
Content of DB: Dw1 A-NR F-Nr

DW2 number of words being read

DW3 directory name

DW4

1-22 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

1.2.6.8 Create File/Rewrite Existing File

Parameterization of FB3: F-Nr 60 ($3C hex)
DOSP attribute of new file
QT/N no. of DB with the file name
QANF position of file namein DB
QLAE length of file namein the DB in words
Content of DB: DwW1 file name
DW2
DW3
Parameter:
Attribute: 00 normal
01 read-only
02 hidden
04 system
File attributes can be added up:
e.g. attribute 03 => file is read-only and hidden.
Return of FB3: DOSP Handle of the new file
Note:

Does afile with the specified name already exist, then it is cut to zero length, i.e. al present data are

deleted.

Rev. 00/33

VIPA 123

PLC Jobsfor CP (Functionsfor Bank 0 and 1)

Manual Toolbox

1.2.6.9 Create New File

Parameterization of FB3: F-Nr 90 (%5A hex)
DOSP attribute of the new file
QT/N no. of DB with the file name
QANF position of file namein DB
QLAE length of file name in the DB in words
Content of DB: DwW1 file name
Dw2
DW3
Parameter:
Attribute: 00 normal
01 read-only
02 hidden
04 system
File attributes can be added up:
e.g. attribute 03 => file is read-only and hidden.
Return of FB3: DOSP Handle of the new file
Note:

Does afile with the specified name already exist, then it is cut to zero length, i.e. al present data are

deleted.

1-24

VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.6.10 Open File

Parameterization of FB3: F-Nr 61 ($3D hex)
DOSP access mode
QT/N no. of DB with file name
QANF position of file namein DB
QLAE length of file namein DB in words
Content of DB: Dw1 file name
Dw2
DW3
Parameter:
Access mode: 00 open file for reading
01 open file for writing
02 open file for reading and writing
Return of FB3: DOSP handle of the new file
Note:

After opening the file, the access mode can no more be changed, just after closing and renewed
opening it is possible to apply another access mode. Net accesses are possible for this function but
are not taken into account.

(SHARE.EXE must be |oaded)

1.2.6.11 Write Physically a File to Disk (Commit File)

This function ensures a physical transfer of all modified internal data buffers of a CP file to the
drive and updating of date and time of the last modification in the directory and updating of the file
size. Thisfunction is equivalent to file closing and renewed opening.

Parameterization of FB3: F-Nr 104 ($68 hex)
DOSP handle number of file to be written

This function does not transfer any data from the PLC to the CP.

1.2.6.12 Close File

Parameterization of FB3: F-Nr 62 ($3E hex)
DOSP handle number of file to be closed

This function does not transfer any data from the PLC to the CP.

Rev. 00/33 VIPA 1-25

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6.13 Delete File

This function deletes a file on a CP drive. The file needs not to be open before deletion. It is even
possible to delete a file without error message which is open somewhere else and is still processed.
The user has to take care that no files being in the moment accessed are deleted. Thistask isrealized
for networks by the network management software.

Parameterization of FB3: F-Nr 65 ($41 hex)

QT/N no. of DB with file name

QANF position of file namein DB

QLAE length of file namein the DB in words
Content of DB: DW1 file name

Dw2

DwW3

1.2.6.14 Rename File

Parameterization of FB3: F-Nr 86 (%56 hex)
QT/N no. of DB with file name
QANF position of file namesin DB
QLAE length of file namesin the DB in words
Content of DB: DwW1 original file name, zero character, new
Dw2 file name
DW3

The file must not be opened before renaming.

As data both file names are to be transferred connected, first the original file name and then the new
file name. Both names must be separated by at least an ASCII-zero character. As data length must
be defined the length of both file names including al zero characters.

This function can be used to move afile into another directory (move file). Therefore, only the name
of the required target directory must be specified in the new file name.

Note:
Regard that moving afileis possible only within adisk drive.

1-26 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.6.15 Set File Pointer

Parameterization of FB3: F-Nr 66 ($42 hex)
DOSP POS (high-order byte), handle (low-order byte)
QT/N no. of DB with file pointer
QANF position of file pointer in DB
QLAE length of datarecord (2 words)
Content of DB: DwW1 high-order word of file pointer
DW2 low-order word of file pointer
Parameter:
POS: 0 abs. position of file start
1 rel. position from current position (signed)
2 rel. position from file end (signed)

Note:
Note that the value of the file pointer is aways to be regarded as the specification of a byte-position.

Length of afile can be detected by means of this function if 02 is entered as function code and 0 as
new relative position of file end. Finally, the position being at the same time the number of data can
be achieved via"get file pointer”.

1.2.6.16 Get File Pointer

Parameterization of FB5: F-Nr 194 ($C2 hex)
DOSP handle

Parameterization of FB6: ZT/N no. of DB for required data
ZANF target position in DB
ZLAE 2

Content of DB: Dw1 A-NR F-Nr
DwW2 number of words being read
DW3 high-order word of file pointer
Dw4 low-order word of file pointer

The file pointer is returned again as a doubleword. Thus, the digit 2 is aso to be specified as
number of data.

Note
The value of the file pointer is always to be regarded as the specification of a byte-position.

Rev. 00/33 VIPA 1-27

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6.17 Read File or Device

Parameterization of FB5: F-Nr 63 ($3F hex)
DOSP handle of thefile
Parameterization of FB6: ZT/N no. of DB for datato be read
ZANF target position in DB
ZLAE number of datawords to be read (2)
Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 dataword 1
Dw4 dataword 2

The number of words to be read from the file is not allowed to be higher than 504, otherwise the
function is aborted with errors.

An exchange of bytes in a data word or doubleword is not provided in this function. All data are
transferred unchanged from the CP to the PLC. In most of the cases it is delt with ASCII-files where
an exchange is proved anyway to be not necessary. If required, the exchange must be done on the
CP or PLC side, depending on the demands.

1.2.6.18 Write File or Device

Parameterization of FB3: F-Nr 64 ($40 hex)
DOSP handle of file
QT/N no. of DB with datato be written
QANF position of datain DB
QLAE length of data record to be written in words

The number of words to read from the file is not allowed to be higher than 504, otherwise the
function is aborted with errors.

An exchange of bytes in a data word or doubleword is not provided in this function. All data are
transferred unchanged from the PLC to the CP. In most of the casesit is delt with ASCII-files where
an exchange is proved anyway to be not necessary. If required, the exchange must be done on the
CP or PLC side, depending on the demands.

If the function was terminated without errors but the written number is lower than the required, then
apartial write error has probably occurred during the execution, or the character *Z ASCII-code 26,
1A hex has been written to a character device (standard output).

1-28 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

1.2.6.19 Get Date

Parameterization of FB5:
Parameterization of FB6:

Content of DB:

Parameter:
Y ear
Month
Day
Week-day

1.2.6.20 Get Time

Parameterization of FB5:
Parameterization of FB6:

Content of DB:

Parameter:

Hour

Minute

Second
Hundredth second

F-Nr 42 ($2A hex)

ZTIN no. of DB for the date to be read
ZANF target position in DB

ZLAE number of data words to be read (3)
DwW1 A-NR F-Nr

DW2 number of words being read
DW3 year

Dw4 month day

Dw4 week-day 00 o--—---

1980 ... 2099

1..12

1.31

0... 6, (0O=Sunday, 1= Monday, ...)

F-Nr 44 ($2C hex)

ZT/IN no. of DB for the time to be read
ZANF target position in DB

ZLAE number of datawords to be read (2)
DwW1 A-NR F-Nr

DW2 number of words being read
DW3 hour minutes

Dw4 seconds hundredth seconds
0..23

0..59

0..59

0..99

The function returns after an error-free termination two words as number of data. All values are to

be interpreted as bytes.

Rev. 00/33

UVIPA 1-29

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6.21 Program Execute

Direct commands can be passed to the CP viathis function.

Parameterization of FB3: F-Nr 75 ($4B hex)
QT/N no. of DB with the MS-DOS-command line
QANF position of command linein DB
QLAE length of command linein DB in words

MS-DOS is no Multi-Tasking operating system enabling concurrent execution of several programs.
As a rule, the main memory of a personal computer is too much limited as to load a series of
resident programs with extensive data areas. This function can be called in the moment only if no
other program is running on the CP apart from the COM-driver and other resident utilities. The
COM-driver CP386COM.EXE must be started hereto in non-resident operation (option /NOTSR
when calling CP386COM.EXE).

This function is finished when the caled program is terminated with or without errors.
Consequently, the bank stays disabled for other jobs during the program run. This must be
considered when calling another function!

1.2.6.22 Get MS-DOS Version

Parameterization of FB5: F-Nr 48 ($30 hex)
Parameterization of FB6: ZT/N no. of DB for datato be read
ZANF target position in DB
ZLAE number of data words to be read (3)
Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 main number subnumber
Dw4 OEM-number user number
DW5 seria number

The function returns 3 words as data number after an error-free completion. The version main
number is entered to data byte 0, version subnumber to data byte 1 and the OEM identification is
entered to data byte 2. The bytes 3 and 5 return a 24 bit application serial number. Thereof the
highest-order byte isfiled to byte 3 and the low-order bytes to byte 4 and 5.

1-30 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.2.6.23 Get Detailed Error Information

Parameterization of FB5: F-Nr 89 (%59 hex)
Parameterization of FB6: ZT/N no. of the DB for datato be read
ZANF target position in DB
ZLAE number of data words to be read (3)
Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 error code
Dw4 error class remedy
DW5 error location ------

The function outputs MS-DOS error codes in the data record after an error-free completion. Error
code is entered in data byte O and 1, in data byte 2 the error class, in data byte 3 the remedy and in
data byte 4 the error position (see table).

Table with error codes:

01 invalid function number
02 file not found
03 path (directory) not found
04 too many open files, remedy: increase number of filesin CONFIG.SYS
05 access refused
attempt to modify awrite-protected file
06 invalid handle, there is no opened file for the specified handle
07 memory control blocks destroyed
MS-DOS inoperable, system must be rebooted
08 Nno memory existent
09 invalid memory control block
10 (OAh) invalid environment
11 (0Bh) invalid program format
program is incorrect structured or file has no program
12 (0Ch) invalid access code, wrong access mode input when opening file

13 (ODh) invalid data
14 (OEh) invalid unit
15 (OFh) invalid disk drive, anon-existing disk drive has been responded

16 (10h) invalid command
17 (11h) not the same device
18 (12h) no more files can be created, directory isfull

19 (13h) disk iswrite protected
20 (14h) unknown device
21 (15h) disk drive not ready. No disk inserted
22 (16h) unknwn command
23 (17h) data error (CRC-error)
checksum of disk/hard disk sector wrong; sector probably defect
24 (18h) length of request structure wrong
25 (19h) seek error, positioning error, file pointer was positioned beyond end of file
26 (1Ah) unknown mediatype, (disk isnot in MS-DOS format)

Rev. 00/33 VIPA 1-31

PLC Jobsfor CP (Functionsfor Bank 0 and 1)

Manual Toolbox

27 (1Bh)
28 (1Ch)
29 (1Dh)
30 (1Eh)
31 (1Fh)
32 (20h)
33 (21h)
34 (22h)
35 (23n)
36 (24h)
80 (50n)
82 (52h)
83 (53n)

112 (70h)

113 (71h)

sector not found

printer reports paper out
write error

read error

general error

file sharing violation
filelocking violation
invalid disk change

FCB not available

file sharing buffer overflow
file already exists
directory cannot be created

Int 24 error (handling of critical errors)
size error, invalid number of data

(e.g. tria to read or write more than 504 words)

time exceeded during communication.

For about 10 sec the CP was unable to access the bank.

1-32

VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

Codetable for error classes:

01
02

03
04
05
06

07
08
09
0A
0B

0C

no resources available (memory or handles)

no error, but actual status (disabled region in afile),
which is expected to disappear.

authorisation problem

internal error in system software

hardware error

system software error, no error of active process
(as missing configuration files)

application program error

file or element not found

file or element has afaulty type or format

file or element access disabled

wrong disk in disk drive,

faulty data sectors or error of storage medium
other error

Code table for recommended measures

01
02
03
04
05

06
07

function repeat several times.Then ask user whether to abort

or to ignore the error.

function repeat severa times time-delayed between single attempts.
Then ask the user whether to abort or to ignore the error.

correct information by user input

(usually caused by invalid file name or disk drive specification).
abort application correctly

(close opened files, disable file locking)

stop application immediately without 'ordering'.

ignore error

repeat after the user is prompted to correct the error.

Code table for error locations

01
02
03
04
05

unknown

block device or disk drive emulation (RAM disk)
network

seria device

memory

Rev. 00/33

VIPA 1-33

PLC Jobsfor CP (Functionsfor Bank 0 and 1) Manual Toolbox

1.2.6.24 General Interrupt

The function enables to call general interrupts of the CP, e.g. VGA-BIOS-interrupts, keyboard
interrupt, mouse interrupt etc. Because of various parameterization opportunitiesit is not possible to
supply all registers with parameters. Four data words are passed to this function which are loaded
correspondingly in registers AX, BX, CD and DX. The interrupt number is to be stored to the
DOSP-parameter. All interrupt numbers are permitted.

After the function is executed, the value returned to register AX is entered in DOSP-parameter.

Parameterization of FB3: F-Nr 255 ($FF hex)

DOSP interrupt number

QT/N no. of DB with data to be written

QANF data positionin DB

QLAE length of data record to be written in words
DB content: DW1 dataword for register AX

DW2 dataword for register BX

DW3 dataword for register CX

DwW4 dataword for register DX
Return of FB3: DOSP dataword from register AX

This call should only be used by experienced DOS-programmers because this
call enables arbitrary DOS-accesses.

1-34 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3 CP-Jobs for PLC (Functions for Bank 2, 3 and 7)

1.3.1 Overview

The driver program CP386COM serves jobs initiated by the PLC, as well as jobs initiated by the
CP386. The driver supplies a series of functions for the banks 2, 3 and 7. With these functions data
can be read from the PLC or written to the PLC respectively from a running application on the CP.
All functions are called by means of software interrupt 78h.

Tranfer and return of parameters is realized exclusively in the processor registers when calling the
interrupt. Register assignment is included in the description of functions. Interfaces are
implemented for Turbo-Pascal, Turbo-C and C++, as well as Microsoft-C. Also functions for
reading and writing of data to the PLC, status call and abort functions are realized. Functios are
differed by exchanging single elements and data blocks when data are transmitted. Functios are
handled as "jobs'. When calling a function, a job number is returned which is used to call the
processing status. Up to 127 jobs can processed at the same time in each of banks 2 and 3.

Following functions are available:

Bank Function Function
used number
none $00 status call
2 $21 read a single element from the PLC
2 $21 read ablock from the PLC
2 $20 status call of read job
2 $28 abort al read jobs
3 $31 write asingle element into the PLC
3 $31 write ablock into the PLC
3 $30 status call of writejob
3 $38 abort all write jobs
7 $70 status call for process image
7 $71 read a process image area

Rev. 00/33 VIPA 1-35

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.2 Installation of Bank Software for Linking PLC and CP

1.3.2.1 PLC Side: Handling Modules

Handling modules FB1 and FB2 have to be loaded in the PLC to enable communication with the
CP. Handling module FB1 is called up in OB1 and handling module FB2 in the restart modules
(OB21 and OB22).

Examplefor callingup FB1in OB1:

Modul e#0B1
Bl B
0000 ; SPA FB 1
NAME #CP-L/S
ANSS =KY 2, 32
PAA =KF +1
PAFE =MB 99
0005 ; BE

Transfer parameters:

ANSS. KY AN Number of jobsto be at most processed on the bank
when calling up a handling module
SS Number of basic bank

PAA: KF Update ident of process images on the bank when
calling up the handling module
#0 Processimages are updated
= 0 Processimages are not updated

PAFE: MB Error acknowledgement message of handling module

=0 no error occurred

#0 error occurred. Error number is sent in PAFE-byte

Error number:

1 Number of jobs to be at most processed when calling up
ahandling moduleis 0.

2 Number of jobs to be at most processed when calling up
a handling module is higher than 127.

3 Basic bank number is not divisible by 8

5 Bank is not synchronized yet by CP.

6 For ablock job being thefirst call, no further job is allowed
to bein the bank.

7 A further block job isonly alowed to be the first job in the bank.

Scratch pads used: MB200-MB255

1-36 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

Examplefor calling up FB2in OB21.:

Modul e#0B21
Bl B
0000 ; SPA FB 2
NAMVE #SYNCHRON
SSNR =KY +32
WART =KF +0
PAFE =MB 98
0005 ; BE

Transfer parameters:

SSNR: KF Number of basic bank
WART: =0 FB-SYNCHRON does not wait until every single bank is
synchronized by CP
#0 FB-SYNCHRON waits at every single bank until the CP
has synchronized this bank
PAFE: BY Error acknowledgement message of handling module

=0 no error occurred
#0 error occurred:
3 basic bank number is not divisible by 8.

Scratch padsused: MB200-MB255

Rev. 00/33 VIPA 1-37

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.3 Driver Functions via Software Interrupt

1.3.3.1 CP Status Call

This function outputs various arbitrary status information via the CP. Moreover, it can be used by
the applications software to check whether the CP software driver is loaded. Further information
returned is the output status of hard and software, CPU identification etc.

Register IN high ouT low
AX $00 $C386
BX VGA-Bios Bios
CX CP CPU
DX CP-Status PLC-Status

AX (C386 hex code for CP software is|oaded

BH output status of CP VGA-BIOS

BL output status of CP-BIOS

CH output status of driver software (CP)

CL codeof CPU in PLC (valid if banks are synchronised)
DH CPstatusregister (I0-address 280h)

DL PLC statusregister (10-address 281h)

Codes of the output statuses (version numbers) for BIOS, VGA and driver are BCD-coded in one
byte. That is, the value 10 (hex) is equivalent to version 1.0; 15 (hex) is equivalent to version
number 1.5 and 1A (hex) is equivaent to version 1.10.

This function does not execute any initializations in the banks.

1-38 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.3.2 Read a Single Element from the PLC

With this function a single data type (bit, byte, word,...) can be read from the PLC. The function is
just starting the job and does not wait for the PLC to execute it, but returns immediately, to where it
was called. Therefore the data can be read not before the function 'status call' was executed.

Register high In low Out
AX $21 typ status
BX size bst
CX adr
DX - bit

typ element area (type) of datafor single element in PLC (DB, MB, ...)
size code of data size (bit, byte, ...)
bst module number, isto be set only for data area (type) DB or DX

if data area (type) is absolute, the higher order bits of adr are here.
adr initial addressin area
bit Bit-number if element sizeis bit or semaphore.

status <0 error code because of an error
error numbers of PLC are summed up with FFFOh
1..127 job number to call status

Note:
This function does not return datal If the job statusis 'finished without error’, the data can be passed
by calling the function status call.

To ensure, that afinished reading job will not be overwritten with a new job before data are passed,
the job is blocked. After starting a job, its status is to be checked as long as the job is finished with
or without error. If the status of the job is 'finished without error’, data will be copied to the CP with
the address specified. If no status call is executed, the job remains blocked, and possibly no further
read jobs can be started, even if all jobsin the bank are finished.

Rev. 00/33 VIPA 1-39

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.3.3 Read a Block from the PLC

With this function a whole block of data can be read from the PLC. The function is just starting the
job, and does not wait until the PLC is executing it, but returns immediately to where it was called.
Therefore the data can be read not before the function 'status call' was executed.

Register high In low Out
AX $21 typ status
BX size bst
CX adr
DX len

typ element area (type) of datafor single element in the PLC (DB, MB, ...)
size datasize of block data (ident. whether single bytes are to be exchanged)
OF(hex) data block of bytes (no exchange)
1F(hex) datablock of words (exchange of high- and low-byte)
2F(hex) data block of doublewords (exchange of all 4 bytes)
bst module number, isto be set for element areas (type) DB, DX , FX ...
if element area (type) is absolute, then here are high-order bits of adr.
adr initial addressin the area
len number of datain words!! (alsoif size is byte or doubleword)

status <0 error number because of error
=0 job number to call status

Note:

For reasons of executing an automatical adjustment of data during the transmission, the type of the
datain ablock (bytes, words, doublewords) has to be specified. One block can only contain data of
the same type. Concernig words and doublewords for every single data an exchange of the bytesis
executed correspondingly.

This function does not return datal If the job status is 'finished without error’, the data can be passed
by calling the function status call.

A block read job can only be started, if bank 2 is empty, that means, no variable read jobs and no
block read job may be in processing status.

To enable, that afinished reading job will not be overwritten with a new job before data are passed,
the job is blocked. After starting a job, its status is to be checked as long as the job is finished with
or without error. If the status of the job is 'finished without error’, data will be copied to the CP with
the address specified. If no status call is executed, the job remains blocked, and possibly no further
read jobs can be started.

1-40 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

1.3.3.4 Write a Variable to the PLC

This function enables to write single data (bit, byte, word,...) to the memory of the PLC. When
calling, the address of a variable to be written must be specified. The function transmits its value to
the bank and does not wait for the PLC to read the data, but returns immediately to where it was

called.
Register high In low Out
AX $31 typ status
BX size bst
CX adr
DX - bit
Sl offset
DS segment
typ element area (type) of datafor single element in PLC (DB, MB, ...)
size code of data size (Bit, Byte, ...)
bst module number, isto be set only for element area (type) DB or DX
if element area (type) is absolute, here are the high-order bits of adr.
adr initial addressin area
bit bit number if data size is bit or semaphor.
offset offset of variable address (in CP)
segment segment of variable address (in CP)
status <0 error number because of error
129-255 job number to call status
Note:

Different to read jobs, awrite job is not being blocked, nevertheless the job status as well should be
aslong called asthe job isfinished with or without error.

Depending on the element size, the pointer to the datain the CP isto interpreted differently:

bit or semaphore

Pointer is the address of a byte, the bit is read by bit number 0.

Byte, left byte, right byte

The pointer is the address of abyte. The byteis read from the memory cell.

Word

The pointer is the address of aword. High- and low-byte are exchanged at the transmission.

Doubleword/extended word

The pointer is the address of a extended word, the extended word is read and
bytesisreverse.

the order of al 4

Rev. 00/33

VIPA

1-41

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.3.5 Write a Block to the PLC

With this functions a whole data block can be transmitted to the PLC. When calling, a pointer to the
data block is to be specified. The function writes the data to the bank and returns immediately to
where it was called. There is no delay for the PLC to read the data. Subsequently the data block is
competely available in the CP and could be overwritten for example.

Register high In low Out
AX $31 typ status
BX size bst
CX adr
DX len

Sl offset
DS segment
typ datatype of datafor block element in PLC (DB, MB, ..))
size datasize of block data
OF(hex) datablock of bytes
1F(hex) datablock of words
2F(hex) datablock of doublewords

bst module number where DB, DX, FB isrelevant,

contains at typ = absolute the high-bits of adr

adr initial addressinthe area

len number of datainwords!!

offset offset of block address (in CP)
segment segment of block address (in CP)
status <0 error number because of error

128 job number to call status

Note:

For reasons of executing an automatical adjustment of data during the transmission, the type of the
datain ablock (bytes, words, doublewords) has to be specified. One block can only contain data of
the same type. Concernig words and doublewords for every single data, an exchange of the bytes is
executed correspondingly.

A block write job can only be started, if bank 3 is empty, that means, no variable write jobs and no
block write job may be in processing status.

A block write job is blocking the bank. After starting ajob, its status is to be checked as long as the
job is finished with or without error. If the status of the job is finished without error’, data will be
copied to the PLC with the address specified. If no status call is executed, the job remains blocked,
and possibly no further read jobs can be started.

1-42 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.3.6 Read Job Status

With this function, the status of an earlier started job can be called. For read jobs, variable and block
read jobs, this function copies data to a specified address to the CP, if the job status is ‘finished
without error'.

Register high In low Out
AX $20/$30 anr status
Sl offset
DS segment
fn function number for status call
$20 for read jobs
$30 for write jobs
anr job number

offset offset of dataaddress (in CP)

to be specified only for read jobs (variables and block).
segment segment of data address (in CP)

to be specified only for read jobs (variables and block).

status <0 job finished with error
error messages of PLC are added with FFOOh.
1 jobstill in process
2]job status not defined
3 jobfinished without error

The following procedure is advisable for the status call:
» If thejobisstill "in processing", the status function has to be called as long as the status changes.

» Concerning write jobs (bank 3): if the job was "finished without error”, then the data were
written to the PLC. For block elements, the bank has been released.

e Concerning read jobs (bank 2): If the job is 'finished without error', and a pointer was specified
for the data, the data will be copied to the specified address in the CP. Depending on the
specified data size, an exchange of bytes will be executed, if neccessary. The job block will be
released, in order to enable the execution of new jobs. If the address NULL (0:0) is specified as a
pointer, no datawill be copied, but the job will be released as well.

» If thejob statusis 'not defined' the job was aready finished earlier, but was not overwritten by a
new job. If this job was aread job and a pointer unequal to NULL was specified, the data will be
copied to the specified destination address.

* If thejob is "finished with error", then the job block was enabled if aread job or a block job is
concerned.

Rev. 00/33 VIPA 1-43

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

» For aread job for single variables, the pointer is to be interpreted differently, depending on the
element size:

Bit or semaphore

The pointer is the address of a byte, the bit will be written to bit number O, the whole
byte will be overwritten.

Byte, left byte, right byte

The pointer is the address of a byte. The byte will be written to the storage cell.
Word

The pointer is the address of aword. High and low-byte will be interchanged during
transmission.

Doubleword/extended word:

The pointer is the address of a exetended word, the order of all 4 byteswill be
interchanged and be written to the extended word.

» For aread job for a data block, the pointer is to be interpreted differently, depending on the
element size:

Byte:

The pointer is the address of a block of bytes, the individual bytes will be transmitted
unchanged from the PLC.

Word:

The pointer is the address of ablock of words. High and low byte will be
interchanged for every individual word during transmission.

Doubleword/extended word:

The pointer is the address of a block of exetended words. All 4 bytes of every
individual exetended word will be interchanged during transmission.

1-44

UVIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.3.7 Abort All Jobs of a Bank
Register high In low Out
AX fn status

fn function number for status call
$28 abort all read jobs
$38 abort all write jobs

status <O error number because error occurred
0 all jobswere aborted.

All not yet finished write or read jobs can be aborted by means of this function. It must not be
differed between variable and block jobs. Also if there were no jobs active in the bank, the function
answers with the return value 0.

1.3.3.8 Read Status of Process Image

Register high In low Out
AX $70 - status
status O Nno process image available

1..255 current process image counter

The current value of the process image counter (bank 7 address 3FEh) can be read by means of this
function. If the value is 0 then no processimage is available.

Rev. 00/33 VIPA 1-45

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.3.9 Read Area of Process Image

Register high In low Out
AX $71 typr status
BX adr
CX len

Sl offset
DS segment

typ data type of processimage (EB, MB)

adr initial addressin area

len number of datain bytes or words (depending on TY PE)!!

offset offset of dataaddress (in CP)

segment segment of data address (in CP)

status <0 error number because of error
=0 processimage not available
>0 counter for process image (as for status function)

Thisfunction is used to read an area of the current process image. When accessing single areas, then
the length of the area is supervised, e.g. cannot be read from EB126 with the length of 4 bytes
because only 128 byte EB are available.

The length is input in words for timer and counter access, and in bytes for all other types. For timer
and counter the high- and low byte of every word is exchanged aso at the transfer, so that the data
in the CP can be correctly processed as words.

By setting the type ABSOLUT, an optional process image sector can be read, also affecting other
areas. The length is given in bytes, dso if it is read from timer or counter range. If arange of timer
or counter is read, then high- and low byte is changed again, too !!

06 counter (Ilength in words)

07 timer (length in words)

08 marker (Ilength in bytes)

09 EB (length in bytes)

0A AB (length in bytes)

OF absol ute access to process image (length in bytes)

1-46 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

1.3.3.10 Error Numbers of CP for Banks 2,3 and 7

hex

FFFF
FFFE
FFFD

FFFC
FFFB

FFFA
FFF9

FFF8
FFF7
FFF6

Fr
EE

description
invalid data type

length error (e.g. address too big, bit number too high)

invalid data size (wrong value at single or block job)

datatype for this CPU not possible

bank full, 127 single jobs in the bank, or at least 1 single element-
and ablock job are to be started.

bank access disabled for 10 sec (PLC stop probably)

job/bank is still blocked (job status was not checked

in order to de-block the job).

wrong job number for status function (e.g. job no > 255)

faulty source data pointer (address NULL was entered in write job)
job not in process (not used 1)

invalid function call

job stopped during initialization

Rev. 00/33

VIPA 1-47

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.4 Interface for Turbo-Pascal (from Version 4.0)

To facilitate calling functions of COM-driver from Pascal programs, a Turbo-Pascal-Unit has been
created which makes available all functions of the service interrupt INT 78 to be easy called. For
every driver function an adequate Pascal-procedure is defined which supplies registers, calls
interrupts and returns values. Thus, also users being not familiar with system-oriented programming
on CP, are ableto utilize fully all driver feasibilities.

All required functions, data types and constants are included in the Unit CP386LIB. This has to be
entered with "USES CP386Lib" into the application program if it should be used in a Pascal-
program. It must be ensured that the compiled Unit CP386LIB.TPU is contained in the directory
where Turbo-Pascal traces for units. Setting occurs via the menu items "Options| Directories| EXE
& TPU-directory" (cf. Manual or Help-Functions for Turbo-Pascal).

Following sections show only a survey of the individua functions. For a detailed description
including all important information see function descriptions of the previously described sections.

1.3.4.1 Function CP-Status Call
FUNCTION CP_Info (AR inforec : CP386InfoRec) : INTEGER,

Data structures:

TY PE CP386InfoRec =

RECORD
CP_id : WORD,; (* identification: CP386 value= $C386 *)
VGA _ver, BIOS ver: BYTE; (* version numbers. VGA-BIOS and BIOS *)
DRV _ver: BYTE; (* identification: software version *)
CPU_AG: BYTE; (* identification CPU in PLC *)
CP _reg, S5 reg: BYTE; (* CP- and PLC-status register *)

END;

Data structure for the general status info function and the components are defined corresponding to
CP values.

This function calls the driver function "general status information”, but previously it is checked
whether the driver is installed. If not, the function returns the value -1. If the COM-driver is
installed, value O is returned and the components of info-structure inforec are set adequate. The
component CP_id is aways identified with the value $C386.

1-48 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.4.2 Read a Single Element from the PLC
FUNCTION CP_read_AG(size, typ, bst : BYTE; adr : longint; bit : BYTE) : INTEGER,;

size: datasize of single elements

typ: datatype for single elements

bst: module number

adr: address in the module or absolute address
bit: bit number

More details see chapter 1.3.4.10.

Return: job number or negative number if thereis an error

Thisfunction calsthe driver function "read a single element from the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

VAR a_nr, (* job number for read job *)
stat : | NTEGER; (* nmonent aneous job status *)
wert : BYTE; (* value read fromthe PLC *)

BEA N

(* start job *)
a nr := CP_read AG LBYTE ELM DB SNG 10, 1, 0);

IFan <0 (* error occurred *)
THEN WiteLn('job finished with error: ', a_nr);
ELSE BEG N (* a_nr contains job nunber
*
REPEAT
stat := CP_stat_AQ a_nr, Addr(value)); (* job status/fetch data *)

UNTI L stat <> REQ WRKN, (* as long as job is ready with or wi thout
errors *)

CASE stat OF

REQ NO ERR: WitelLn('date: ', value, ' has been read');
REQ_UNDEF: WitelLn('job status nondefined, date: ',value, ' read');
ELSE WiteLn('job is ready with error: ', stat);

END;

END;

Rev. 00/33 VIPA 1-49

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.4.3 Read a Block from the PLC
FUNCTION CP_readn_AG (size, typ, bst:BYTE; adr:longint; len:WORD):integer;

size: data size of block elements

typ: data type of block elements

bst: module number

adr: address in module or absolute address
len: number of datain words

More details see chapter 1.3.4.10.

Return: job number or negative number if thereisan error

This function calls the driver function "read a block from the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number O is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

VAR a_nr, (* job number for read job*)
stat : | NTEGER; (* nmonent aneous job status *)
buff : ARRAY[1l..50] OF | NTEGER (* data read fromthe PLC *)

BEA N

(* start job *)
a nr := CP_readn_AG WBLOCK, DB BLK, 5, 10, 100);

IFan <0 (* error occurred *)

THEN WiteLn('job finished with error: ', a_nr);

ELSE BEG N (* a_nr contains job nunber *)
REPEAT

stat := CP_stat_AGQ a_nr, Addr(buf)); (* job status/fetch data *)
UNTIL stat <> REQWRKN;, (* as long as job is ready with or without errors

*)

CASE stat OF
REQ NO ERR: WitelLn(buffer was read');
REQ_UNDEF: WitelLn('job status nondefined, buffer was read');
ELSE WiteLn('job is ready with error: ', stat);

END;

END;

1-50 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.4.4 Write a Single Element to the PLC
FUNCTION CP_write_AG (size, typ, bst : BYTE; adr: longint; bit: BY TE; p: POINTER)

: integer;

size: datasize
typ: datatype single elements
bst: module number
adr: address in module or absolute address
bit: bit number
p: pointer to date to be written

for data type bit, semaphore or byte: pointer to a byte

for data type word: pointer to aword

for data type doubleword: pointer to a doubleword

More details see chapter 1.3.4.10.

Return: job number or negative number if thereis an error

Thisfunction cals the driver function "write a single element into the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

VAR a_nr, (* job number for read job*)
stat : | NTEGER; (* monent aneous job status *)
wert : BYTE; (* value to be witten *)

BEGA N

(* start job *)

wert = $7E;

anr = CP wite AG BYTE ELM DB _SNG, 10, 1, 0, Addr(value));

IFan <0 (* error occurred *)

THEN WitelLn('job finished with error: ', a_nr);

ELSE BEG N (* a_nr contains job nunber *)
REPEAT

stat := CP_stat_AQa_nr, NL); (* read job status *)
UNTIL stat <> REQ WRKN;, (* as long as job is ready with or without errors
*)

CASE stat OF

REQ NO ERR: WitelLn('date: ', value, ' was witten');
REQ_UNDEF: WitelLn('job status nondefined.');
ELSE WiteLn('job is ready with error: ', stat);
END;
END;

Rev. 00/33 VIPA 1-51

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.4.5 Write a Block into the PLC

FUNCTION CP_writen_AG (size, typ, bst : BYTE; adr : longint; len : word;
p: POINTER) : integer;

size: data size of block elements

typ: data type block elements

bst: module number

adr: address in module or absolute address
len: number or datain words

p: pointer to the data block to be written

More details see chapter 1.3.4.10.

Return: job number or negative number if there was an error

This function calls the driver function "write a block into the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number $80 (hex) is returned as function value.

Recommended calling method

VAR a_nr, (* job number for read job*)
stat : | NTEGER; (* nmonent aneous job status *)
i : I NTEGER
buff : ARRAY[1l..100] OF BYTE; (* data to be witten *)
BEA N
FORi :=1 TO 100
buff[i] :=1; (* preset data buffer *)

(* start job *)
anr := CPwiten AGQ B BLOCK, DB BLK, 5, 10, 100, Addr(buff));

IFan <0 (* error occurred *)
THEN WiteLn('job finished with error: ', a_nr);
ELSE BEG N (* a_nr contains job nunber *)
REPEAT
stat := CP_stat_AGQa_nr, NL); (* read job status *)

UNTIL stat <> REQWRKN;, (* as long as job is ready with or without errors
*)

CASE stat OF
REQ NO ERR: WitelLn(' buffer was witten');
REQ_UNDEF: WitelLn('job status nondefined.');
ELSE WiteLn('job is ready with error: ', stat);
END;
END;

1-52 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.4.6 Read Job Status
FUNCTION CP_stat AG (a nr: INTEGER; p: POINTER): INTEGER,;

anr: job number of the job to be tested
p: pointer to date or data block in CP-memory
(to be preset only for read jobs with single and block element)
for data type bit, semaphore or byte pointer to a byte
for data type word, pointer to aword
for data type doubleword, pointer to a doubleword
for data type block, pointer to buffer for data block

Return: job status or negative number if thereis an error

This function calls the driver function "read job status'. The registers are preset according to the
transferred parameters when calling up. Meaning of the parameters is described in the section of
driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, the
job status (see chapter 1.3.4.10) is returned.

1.3.4.7 Abort all Jobs of a Bank

FUNCTION CP_cncl_AG (a_nr : BYTE): INTEGER;

anr: identification for bank 2 or 3
$00 abort all still active jobs of bank 2
$80 abort all still active jobs of bank 3

Return: 0 or negative number if thereis an error

This function calls the driver function "abort all jobs of a bank". The registers are preset according
to the transferred parameters when calling up. Meaning of the parametersis described in the section
of driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, i.e.
al jobs have been aborted, then O is returned.

Rev. 00/33 VIPA 1-53

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.4.8 Read Status of Process Image

FUNCTION CP_stat_PA : BYTE;

Return: process image counter

This function calls the driver function "status call process image". This function returns the process
Image counter.

1.3.4.9 Read Area of Process Image

FUNCTION CP_read_PA (typ : BYTE; adr, len : WORD; p : POINTER) : INTEGER;

typ: data type process image

adr: address in the area or absolute address

len: number of data (bytes or words) depending on the type
p: pointer to a data buffer in the storage

More details see chapter 1.3.4.10.

Return: process image counter

This function calls the driver function "read a process image ared'. The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the current value of the process image counter is returned.

1-54 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

1.3.4.10 Constants of Turbo Pascal

Following constants are aready predefined. It is recommended to use these constants also in the
program text for reasons of clearness and better readability. Moreover, adaptations attended to
possible later changes of the COM-driver can be carried out easier.

1.3.4.10.1 Predefined constants for data sizes

CONST

BIT ELM 0x00
SEMA ELM 0x01
BYTE_ELM 0x02
LBYTE_ELM 0x02
RBYTE_ELM 0x03
WORD ELM 0x04
DWORD_ELM 0x05
BLOCK_ELM 0x07

$00;
$01;
$02;
$02;
$03;
$04;
$05;
$07;

* pit *)

bit as semaphore *)
byte *)

left byte of a word *)
right byte of a word *)
word *)

doubl eword *)

bl ock *)

1.3.4.10.2 Predefined constants for data types for single elements

CONST

DB_SNG 0x00
DX_SNG 0x01
BA_SNG 0x02
BB_SNG 0x03
BS_SNG 0x04
BT_SNG 0x05
Z SNG 0x06
T_SNG 0x07
MB_SNG 0x08
EB_SNG 0x09
AB_SNG 0xO0A
PB_SNG 0xOB
QB_SNG 0x0C
ABS_SNGOXOF

$00;
$01;
$02;
$03;
$04;
$05;
$06;
$07;
$08:;
$09;
$OA;
$0B;
$0C;
$0F;

DB *)

DB i n external
BA *)

BB *)

BS *)

BT *)

counter *)
tinmer *)

mar ker *)

I nput area *)
out put area *)
P- peri pheral s *)
Q peripherals *)
absol ute nmenory *)

menory *)

1.3.4.10.3 Predefined constants for data types for block elements

CONST

DB_BLK
DX_BLK
BA_BLK
BB_BLK
BS_BLK
BT_BLK
FB_BLK
FX_BLK
OB_BLK
PB_BLK 0x09
SB_BLK Ox0A
ABS BLK OxOF

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08

$00;
$01;
$02;
$03;
$04;
$05;
$06;
$07;
$08;
$09;
$OA;
$0F;

data nodul e *)

DB in external nmenory *)

FB i n external
B *)
PB *)
SB *
absol ute nmenory *)

menory *)

Rev. 00/33

VIPA

1-55

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7)

Manual Toolbox

1.3.4.10.4 Predefined constants for data type for block elements

CONST
B BLOCK O0xOF = $07; (* type: block with bytes *)
W BLOCK Ox1F = $17; (* type: block with words *)
D BLOCK O0x2F = $27; (* type: block with extended
wor ds *)

1.3.4.10.5 Identifications for job status
CONST

REQ WRKN 0x01 = $01; (* job in processing *)
REQ UNDEF 0x02 = $02; (* job status not defined *)
REQ NO ERR 0x03 = $03; (* job ready without errors *)

1.3.4.10.6 Predefined constants for data types for process image

CONST

Z PA 0x06 = $06; (* counter?*)

T_PA 0x07 = $07; (* timer *)

MB_PA 0x08 = $08; (* marker *)

EB PA 0x09 = $09; (* input area *)

AB_PA 0x0A = $0A; (* out put

ABS_PAOXxOF = $01F (* absolute block in PA *)
1.3.4.10.7 Predefined constants for error messages: bank 2, 3 and 7
CONST
ERR S5 TYP = $01; (* invalid element type *)

With a single-element access with the element type DX_SNG,

BA_SNG, BB_SNG, BT_SNG or QB_SNG or with a block

element access with element type DX _BLK, BA_BLK,

BB_BLK, BT_BLK or FX_BLK the programme tried to access

datain a PLC of the type 115U. However, these element types

do not exist in this PLC type.

Correction: To correct the parameter ,, typ" in the function
call of the CP user software.

ERR_S5 BST = $02; (* module not available *)

With a single-element access with element type DB_SNG or

with a block element type DB_BLK the programme tried to

access anot existing module.

Correction: To create data block in the PLC or to correct
parameter ,,bst” in the function call of the CP-
user software.

1-56 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

ERR_S5 ELM

ERR S5 SIZE

$03;

$04,

(* element not available *)

With a single-element access with element type DB_SNG or
with a block element access with element type DB_BLK the
programme tried to access data in a data block which are not
available.

Correction: To extend the datablock inthe PLC
correspondingly or to correct the parameter
»adr* or ,len“ in the function call of the CP user
software.

With a single-element access with element type Z SNG or
T_SNG the programme tried to access timer or counter with a
number > 127.

Correction: To correct the parameter ,,adr” in the function
call of the CP user software.

With a single-element access with element type MB_SNG the
programme tried to access flags with a number > 199 with the
size of element Byte, with number > 198 with the size of
element word or with number > 196 with the size of ement
douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

With a single-element access with element type EB_ - or
AB_SNG the programme tried to access the process image of
the 1/0 range with number > 127 with the element size Byte,
with number > 126 with element size word or with number >
124 with element size douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

With a single-element access with element type PB_SNG the
programme tried to access elements of the P-peripherals with
number > 255 with element size Byte, with number > 254 with
element size word or with number > 252 with element size
douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

(* invalid element size *)
With a single-element access with element type Z SNG or
T_SNG the programme tried to access timer or counter, whereas

the parameter element size was not set to word access
(WORD_ELM).

Correction: To correct the parameter ,,size" in the function
call of the CP user software.

Rev. 00/33

VIPA 1-57

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

ERR S5 BIT

ERR_S5 STRT

$05;

With a single-element access with element type MB_SNG or
ABS SNG the programme tried to access flags or absolute
addresses with the parameter element size RBY TE_ELM.

Correction: To correct the parameter ,, size" in the function
cal of the CP user software.

With a single-element access with element type EB_SNG or
AB_SNG the programme tried to access inputs or outputs in the
process image with the parameter element size SEMA_ELM or
RBYTE_ELM.

Correction: To correct the parameter ,, typ" in the function
cal of the CP user software.

With a single-element access with element type PB_SNG the
programme tried to access the P-peripherals with the parameter
dement size BIT_ELM, SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter , typ" in the function
cal of the CP user software.

With a reading single-element access with element type
ABS SNG the programme tried to read absolute addresses with
element size SEMA_ELM. This type of access is only possible
in writing under absolute addressing! When single bits are to be
read then the element size BIT_ELM hasto be used.

Correction: To correct the parameter ,, typ" in the function
call of the CP user software.

(* Bit-number too high *)
With a single-element access with element type MB_SNG or
ABS SNG and the element size BIT_ELM or SEMA_ELM the

programme tried to access a flag bit or an absolute address bit
with abit number > 7 (15).

Correction: To correct the parameter ,, bit* in the function
call of the CP user software.

With a single-element access with element type EB_SNG or
AB_SNG the programme tried to access an I/O-BIT with a bit
number > 7.

Correction: To correct the parameter ,, bit* in the function
cal of the CP user software.

=$06; (* invalid starting address *)
With a block element access with element type ,,module® BLK

the programme tried to transfer blocks via modules whereas the
relative starting address in the block is> 32767.

1-58

UVIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

ERR_S5 LEN

ERR_S5 ADR

ERR_S5 QVZ

ERR_S5 944

$07;

$08;

$09;

$0A;

Correction: To correct the parameter ,,adr in the function
cal of the CP user software.

(* invalide block length *)

With a block element access under al element types the
programme tried to transfer blocks with a length > 504.

Correction: To correct the parameter ,,len” in the function
cal of the CP user software.

(* Addresstoo big *)

With a single- or block element access with element type
ABS SNG the programme tried to addess an address
> FFFFh in aPLC of the typee 115U. However, the CPUs (up to
CPU 944) have an address range of only 64 KB.

Correction: To correct the parameter ,,adr in the function
cal of the CP user software.

(* QVZ/ADF in the PLC with reading/writing *)

The programme tried to access an address range which is
physically not available.

The PLCs of the type 135 and 155 make this error message
available. A PLC of the type 115U would be set to STOP in this
case.

Correction: To correct the parameters , typ” or ,adr” in the
function call of the CP user software.

(* CPU 944: module in prog.bank *)

With a block element access with element type ,,module® BLK
the programme tried to access a module which is not in the data
block. (This only concerns the CPU 944 form the PLC type
115U)

Correction: To create amodule in the PLC in the data block
bank (via BIB-Nr. 19285) or to correct the
function call in the CP user software.

Rev. 00/33

VIPA 1-59

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.5 Interface to Turbo-C (2.0 and C++ from 1.0), Microsoft-C 6.0

To facilitate calling functions of COM-driver from C-programs, a library file has been created
which makes available all functions of the service interrupt INT 78 to be easy called. For every
driver function a respective C-function is defined which supplies registers, calls interrupts and
returns values. Thus, also users being not familiar with system-oriented programming on CP, are
ableto utilize fully al driver feasibilities.

Data types and constants for element sizes, element types and error numbers as well as function
prototypes of of functionsin ANSI-C-style described in the following are defined in the Include File
"CP386DEF.H". The Include-File must be quoted in the application program.

All required functions are implemented in the CP386LIB.C file. The CP386LIB.O file is aso to be
implemented if it is to be used in a program. Depending on the programming environment and
version, the file is to be packed into the project file (Turbo-C) or Depencie List (Microsoft-C) or
into the Make-File. For detailed information see the respective manuals.

Reference: in "CP386LIB.H" is byte defined as unsigned char word defined as unsigned short.
1.3.5.1 Function CP Status Call

Data structures:

t ypedef struct {
word CP_i d; /* identification: CP386 value = $C386 */
byte VGA ver, BIGCS ver; [/* version nunbers: (V@A) -BIOS */
byt e DRV_ver; /* identification:software version */
byt e CPU_AG /* identification CPU in PLC */
byte CP_reg, S5 reg; /* CP- and PLC-status registers */
} CP386_I nf oBl k; /[* info-block */

Data structure for the general status info function, the components are preset according to values of
the CP486.

1-60 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.5.2 Read a Single Element from the PLC

int CP_read_AG(byte size, byte typ, byte bst, unsigned long adr, byte bit);

size: datasize

typ: data type single el ements

bst: module number

adr: address in module or absolute address
bit: bit number

More details see chapter 1.3.5.10.

Return: job number or negative number if thereisan error

This function calls the driver function "read a single element from the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job nunber for read job*/

int stat; /* noment aneous job status */

int time_count=4000; /* timeout counter (4 seconds) */
byte wert ; /* value read fromthe PLC */

/* start job */
a nr = CP_read_AQ LBYTE_ELM DB SNG 10, 1, 0);

if(a_nr < 0) /* error occurred */
printf("job finished with error: %d\n", a_nr);
el se { /* a_nr contains job nunmber */
do {
stat = CP_stat_AQ a_nr, &wert); /* job status/fetch data */

} while((tine_count > 0)&&(stat == REQ WRKN)) ;
/* as long as job is ready with or without errors*/

switch(stat) ({

case REQ NO ERR

printf("date: % was read\n", wert);
br eak;
case REQ_UNDEF:

printf("job status nondefined, date: %l read\n", wert);
br eak;
defaul t: printf("job is ready with error: %d\n", stat);

}
}

Rev. 00/33 VIPA 1-61

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.5.3 Read a Block from the PLC

int CP_readn_AG(byte size, byte typ, byte bst, unsigned long adr, word len);

size: data size of block elements

typ: data type block elements

bst: module number

adr: address in module or absolute address
len: number of datain words

More details see chapter 1.3.5.10.

Return: job number O or negative number if thereis an error

This function calls the driver function "read a block from the PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number O is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job nunber for read job*/

int stat; /* noment aneous job status */

int time_count=4000; /* timeout counter (4 seconds) */
i nt buff[2100] ; /* value read fromthe PLC */

/* start job */
a_nr = CP_readn_AG(WBLOCK, DB_BLK, 5, 10, 100);

if(a_nr < 0) /* error occurred */
printf("job finished with error: %d\n", a_nr);
el se { /* a_nr contains job nunmber */
do {
stat = CP_stat_AQ a_nr, &buff); /* job status/fetch data */

} while((tine_count > 0)&&(stat == REQ WRKN)) ;
/* as long as job is ready with or without errors */

switch(stat) {

case REQ NO ERR printf("Data have been readed\n", val ue);
br eak;

case REQ UNDEF: printf("job status nondefined\n");
br eak;

defaul t: printf("job is ready with error: %\ n", stat);

}
}

1-62 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.5.4 Write a Single Element into the PLC

int CP_write AG(byte size, byte type, byte bst, unsigned long adr, byte bit, void far *p);

size: datasize
typ: data type single el ements
bst: module number
adr: address in module or absolute address
bit: bit number
p: pointer to the date to be written in the CP-memory
for data type bit, semaphore or byte pointer to abyte
for data type word pointer to aword
for data type doubleword pointer to a doubleword

More details see chapter 1.3.5.10.

Return job number or negative number isthereis an error

This function calls the driver function "write a single element into a PLC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job nunber for read job*/

int stat; /* noment aneous job status */

int time_count=4000; /* timeout counter (4 seconds) */
byte wert = Ox5A; /* value read fromthe PLC */

/* start job */
an =CP wite AGLBYTE ELM DB SNG 10, 1, 0, &wert);

if(a_nr <0) /* error occurred */
printf("job finished with error: %\n", a nr);
el se
{ /* a_nr contains job nunmber */
do
{ .
stat = CP_stat_AQ a_nr, NULL); /* read job status */

} while((tinme_count > 0)&&(stat == REQ WRKN));
/* as long as job is ready with or without errors */
switch(stat)

{
case REQ NO ERR printf("date: % was witten\n", value);
br eak;
case REQ _UNDEF: printf("job status nondefined\n");
br eak;
defaul t: printf("job is ready with error: %d\n", stat);
}

Rev. 00/33 VIPA 163

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.5.5 Write a Block into the PLC

int CP_writen_AG(byte size, bytetyp, byte bst, unsigned long adr, word len, void far *p);

size: data size of block elements

typ: data type block elements

bst: module number

adr: address in module or absolute address

len: number of datain words

p: pointer to the data block to be written in the CP-memory

More details see chapter 1.3.5.10.

Return: job number $80 or negative number if thereis an error

This function calls the driver function "write a block into a PLC". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If the driver has detected an error during the execution, then the respective error
message (negative number) is returned as function value. If the function can be executed without
errors, the job number $80 (hex) is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job nunber for read job*/

int stat; /* noment aneous job status */

int time_count=4000; /* timeout counter (4 seconds) */
int i;

byte buff[100]; /* data to be witten */

for(i = 0; i< 100; i++)
buff[i] = (byte)i; /* preset data buffer */

/* start job */
an = CP witen AG B BLOCK, DB BLK, 5, 10, 100, &buff);

if(a_nr <0) /* error occurred */
printf("job finished with error: %\n", a nr);
el se { /* a_nr contains job nunber */
do {
stat = CP_stat_AQ a_nr, NULL); /* read job status */

} while(stat == REQ WRKN) ;
/* as long as job is ready with or without errors */

switch(stat) {
case REQ NO ERR printf("data have been witten\n", value);

br eak;
case REQ _UNDEF: printf("job status nondefined\n");
br eak;
defaul t: printf("job is ready with error: %d\n", stat);

1-64 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.5.6 Read Job Status

int CP_stat_AG(int r, void far *p);

anr: job number of the job to be tested
p: pointer to date or data block in CP-memory
(only for read jobs with single and block element
pointer to a byte for data variables bit, semaphore or byte
pointer to aword for data type word
pointer to a doubleword for data type doubleword
pointer to buffer for data block for data type block

Return: job status or negative number if error

This function calls the driver function "status call for job". The registers are preset according to the
transferred parameters when calling up. Meaning of the parameters is described in the section of
driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, the
job status (see chapter 1.3.5.10) isreturned.

Rev. 00/33 VIPA 1-65

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.5.7 Abort All Jobs of a Bank

int CP_cncl_AG(int a_nr);

anr: code for bank 2 or 3
$00 abort all still active jobs of bank 2
$80 abort all still active jobs of bank 3

This function calls the driver function "abort all jobs of a bank". The registers are preset according
to the transferred parameters when calling up. Meaning of the parametersis described in the section
of driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, i.e.
al jobs have been aborted, then O is returned.

1.3.5.8 Read Status of Process Image

byte CP_stat PA();

Return: process image counter

This function calls the driver function "status call process image". The function returns the process
image counter.

1.3.5.9 Read Area of Process Image

int CP_read_PA(bytetyp, word adr, word len, void far *p);

typ: data type single el ements

bst: module number

adr: address in module or absolute address

len: number of data (bytes or words) depending on the type
p: pointer to data buffer in CP-memory

More details see chapter 1.3.5.10.

Return: process image counter

This function calls the driver function "read an area of process image'. The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If there was an error during the job execution, then the respective
error message (negative number) is returned as function value. If the function can be executed
without errors, the current value of the process image counter is returned.

1-66 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.3.5.10 Constants for C

Following constants are aready predefined. It is recommended to use these constants also in the
program text for reasons of clearness and better readability. Moreover, adaptations attended to
possible later changes of the COM-driver can be carried out easier.

1.3.5.10.1 predefined constants for data sizes

#define BI T_ELM 0x00 [* bit */

#defi ne SEMA _ELM 0x01 /* bit as semaphore */
#defi ne BYTE_ELM 0x02 /[* byte */

#define LBYTE_ELM 0x02 /* left byte of a word */
#define RBYTE_ELM 0x03 /* right byte of a word */
#defi ne WORD_ELM 0x04 /* word */

#define DWORD_ELM 0x05 /* doubl eword */

#define BLOCK _ELM 0x07 /* block */

1.3.5.10.2 predefined constants for data types for single elements
#def i ne DB_SNG 0x00 /[* DB */

#defi ne DX_SNG 0x01 /* DB in external nmenory */
#def i ne BA_SNG 0x02 /[* BA */

#defi ne BB_SNG 0x03 /* BB */

#defi ne BS_SNG 0x04 /[* BS */

#defi ne BT_SNG 0x05 /* BT */

#define Z_SNG 0x06 /* counter */

#define T_SNG 0x07 [* timer */

#defi ne MB_SNG 0x08 [* marker */

#defi ne EB_SNG 0x09 /* input area */

#defi ne AB_SNG Ox0A /* output area */

#defi ne PB_SNG 0x0B /* P-peripherals */
#define QB_SNG 0x0C [* Q peripherals */

#defi ne ABS_SNG OxOF / * absol ute nenory */
1.3.5.10.3 predefined constants for data types for block elements
#define DB _BLK 0x00 /* data nodul e */

#define DX _BLK 0x01 /* DB in external nmenory */
#defi ne BA _BLK 0x02 /[* BA */

#define BB_BLK 0x03 /* BB */

#defi ne BS_BLK 0x04 /[* BS */

#define BT_BLK 0x05 /* BT */

#defi ne FB_BLK 0x06 [* FB */

#define FX_BLK 0x07 /* FB in external nenory */
#defi ne OB_BLK 0x08 [* OB */

#define PB_BLK 0x09 /* PB */

#defi ne SB_BLK Ox0A /[* SB */

#define MB_BLK 0x0B /* NMB */

#defi ne ABS BLK OxOF /* absol ute nmenory */

Rev. 00/33 VIPA 1-67

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.5.10.4 predefined constants for data type for block elements

#define B_BLOCK OxOF /* type: block with bytes */
#defi ne W BLOCK Ox1F /* type: block with words */
#define D _BLOCK Ox2F /* type: block with extended words */
1.3.5.10.5 identifications for job status

#defi ne REQ WRKN 0x01 /* job in processing */

#defi ne REQ UNDEF 0x02 /* job status not defined */
#defi ne REQ NO ERR 0x03 /* job ready without errors */
1.3.5.10.6 predefined constants for data types for process image
#define Z _PA 0x06 /* counter*/

#define T_PA 0x07 [* timer */

#define MB_PA 0x08 /[* marker */

#define EB_PA 0x09 /* input area */

#define AB_PA Ox0A /* output area */

#define ABS_PA OxOF / * absolute block in PA */

1.3.5.10.7 predefined constants for error messages: bank 2, 3 and 7

CONST

ERR S5 TYP = $01; (* invalid element type *)
With a single-element access with the element type DX_SNG,
BA _SNG, BB_SNG, BT_SNG or QB_SNG or with a block
eement access with element type DX BLK, BA_BLK,
BB _BLK, BT_BLK or FX_BLK the programme tried to access
data in a PLC of the type 115U. However, these element types
do not exist in this PLC type.

Correction: To correct the parameter ,, typ" in the function
cal of the CP user software.

ERR_S5 BST = $02; (* module not available *)

With a single-element access with element type DB_SNG or
with a block element type DB_BLK the programme tried to
access anot existing module.

Correction: To create data block in the PLC or to correct
parameter ,, bst* in the function call of the CP-
user software.

ERR S5 ELM = $03; (* element not available *)

With a single-element access with element type DB_SNG or
with a block element access with element type DB_BLK the
programme tried to access data in a data block which are not
available.

Correction: To extend the data block inthe PLC
correspondingly or to correct the parameter
Ladr® or ,len” in the function call of the CP user
software.

1-68 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

ERR S5 SIZE

$04,

With a single-element access with element type Z SNG or
T_SNG the programme tried to access timer or counter with a
number > 127.

Correction: To correct the parameter ,,adr” in the function
call of the CP user software.

With a single-element access with element type MB_SNG the
programme tried to access flags with a number > 199 with the
size of element Byte, with number > 198 with the size of
element word or with number > 196 with the size of ement
douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

With a single-element access with element type EB_ - or
AB_SNG the programme tried to access the process image of
the 1/0 range with number > 127 with the element size Byte,
with number > 126 with element size word or with number >
124 with element size douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

With a single-element access with element type PB_SNG the
programme tried to access elements of the P-peripherals with
number > 255 with element size Byte, with number > 254 with
element size word or with number > 252 with element size
douple word.

Correction: To check the parameter ,,adr” in the function
call of the CP user software for valence.

(* invalid element size *)
With a single-element access with element type Z SNG or
T_SNG the programme tried to access timer or counter, whereas

the parameter element size was not set to word access
(WORD_ELM).

Correction: To correct the parameter ,, size" in the function
call of the CP user software.

With a single-element access with element type MB_SNG or
ABS SNG the programme tried to access flags or absolute
addresses with the parameter element size RBY TE_ELM.

Correction: To correct the parameter ,, size" in the function
cal of the CP user software.

Rev. 00/33

VIPA 169

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

ERR S5 BIT

ERR_S5 STRT

$05;

$06;

With a single-element access with element type EB_SNG or
AB_SNG the programme tried to access inputs or outputs in the
process image with the parameter element size SEMA_ELM or
RBYTE_ELM.

Correction: To correct the parameter ,, typ" in the function
call of the CP user software.

With a single-element access with element type PB_SNG the
programme tried to access the P-peripherals with the parameter
dement size BIT_ELM, SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter ,, typ" in the function
cal of the CP user software.

With a reading single-element access with element type
ABS SNG the programme tried to read absolute addresses with
element size SEMA_ELM. This type of access is only possible
in writing under absolute addressing! When single bits are to be
read then the element size BIT_ELM hasto be used.

Correction: To correct the parameter ,, typ" in the function
call of the CP user software.

(* Bit-number too high *)
With a single-element access with element type MB_SNG or
ABS SNG and the element size BIT_ELM or SEMA_ELM the

programme tried to access a flag bit or an absolute address bit
with abit number > 7 (15).

Correction: To correct the parameter ,, bit* in the function
call of the CP user software.

With a single-element access with element type EB_SNG or
AB_SNG the programme tried to access an I/O-BIT with a bit
number > 7.

Correction: To correct the parameter ,, bit* in the function
cal of the CP user software.

(* invalid starting address *)
With a block element access with element type ,,module® BLK

the programme tried to transfer blocks via modules whereas the
relative starting address in the block is> 32767.

Correction: To correct the parameter ,,adr in the function
cal of the CP user software.

1-70

UVIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP386COM

ERR_S5 LEN

ERR_S5 ADR

ERR_S5 QVZ

ERR_S5 944

$07;

$08;

$09;

$0A;

(* invalide block length *)

With a block element access under al element types the
programme tried to transfer blocks with a length > 504.

Correction: To correct the parameter ,,len” in the function
cal of the CP user software.

(* Addresstoo big *)

With a single- or block element access with element type
ABS SNG the programme tried to addess an address
> FFFFh in aPLC of the typee 115U. However, the CPUs (up to
CPU 944) have an address range of only 64 KB.

Correction: To correct the parameter ,,adr in the function
cal of the CP user software.

(*QVZ/ADF in the PLC with read-/writing*)

The programme tried to access an address range which is
physically not available.

The PLCs of the type 135 and 155 make this error message
available. A PLC of the type 115U would be set to STOP in this
case.

Correction: To correct the parameters ,, typ” or ,adr” in the
function call of the CP user software.

(* CPU 944: module in prog.bank *)

With a block element access with element type ,,module® BLK
the programme tried to access a module which is not in the data
block. (This only concerns the CPU 944 form the PLC type
115U)

Correction: To create amodule in the PLC in the data block
bank (via BIB-Nr. 19285) or to correct the
function call in the CP user software.

Rev. 00/33

VIPA 171

CP-Jobsfor PLC (Functionsfor Bank 2, 3 and 7) Manual Toolbox

1.3.6 Storage of Process Images to Bank 7

The process image can also be directly read out by the user. Following survey shows how bank 7 is
structured. Direct accessis very fast:

Address in the
bank (hex)

Byt e 0 process imge EB 0

128 byte PAE 0- 127

TTTT T o+

Byte 127 process i mage EB 127

-+
Byte 128 process inmage AB O -+
I
|
I 128 byte PAA 0-127
I
. |
Byte 255 process i mage AB 127 -+
Byte 256 nmarker Byte O -+
I
I
| 256 byte nmarker 0-255
I
. I
Byte 511 nmarker Byte 255 -+
Byte 512/513 Timer 0O (hi gh/1 ow) -+
I
|
| 128 words tiner 0-127
I
. |
Byte 766/ 767 timer 127 (high/low) -+
Byte 768/ 769 counter 0 (high/low) -+

127 words counter 0-126

+ == - -

Byte 1020/1021 counter 126 (high/low)-
Byte 1022 count byte 1) + count byte
Byte 1023 trigger interrupt on CP

Annotation:

All values of this bank are refreshed when the handling module CP L/S is called up (if this is
enabled on the formal operand of the handling module). After every data refreshing in the bank 7
the handling module increments the count byte by 1. CP recognizes by this count byte whether data
arevalid and how often they have been refreshed since the last reading. Data are then valid when the
count byte content isinvolved in the range dual 1...255. iegt. In the case of overflow the count byte
starts again with 1.

The handling module Synchron sets the current counter, address 3FE in bank 7 to 0. By that the CP
recognizes that the datain bank 7 are not valid in the moment.

This bank needs not to be deleted by the CP if 0 is contained in the count byte (address 3FE of
bank).

This bank can only be write accessed by the handling module.

The handling module for refreshing data of bank 7 does not trigger any interrupt.

172 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP386COM

1.4 Operation of the CP386COM in a WINDOWS environment

From the tool disk version 2.2 onwards a programme library for MS-WINDOWS 3.1 with the
following datais available:

The header file CP386WIN.H and the OBJ-file CP386WIN.OBJ.
The file CP386WIN.H contains the necessary definitions for an operation on WINDOWS.
The file CP386WIN.OBJ contains the communication functions on WINDOWS. The functions
have to be called as described in chapter 6.4 for DOS (exception: CP_stat AG)
Changesin thefunction call:
CP stat AG: CP_stat AG(byter) with r = Order number.

New functions:
CP_init(void): Creates a data area for the communication on Dua Port RAM and
returns a pointer on this area.

CP_exit(void): Setsfreethe data area. This command has to be called at the end of the
programme.

Note:

In the SYSTEM.INI under the section [386Enh] the Dual Port RAM area has to be excluded with
the command EMMExclude = ... from the WINDOWS memory management in addition to the entry
inthe CONFIG.SY S!

(Thisisvalid for al cases where the CP486 runs on WINDOWS 3.1 because WINDOWS does not
exclude the Dual Port RAM independently!)

Tool disk 2.2 contains an example for the operation under Windows.

Rev. 00/33 VIPA 173

Operation of the CP386COM in a WINDOWS environment Manual Toolbox

1-74 VIPA Rev. 00/33

2

Linkage with PLC by CP486COM

2.1 General description

2.2 Installation of the page frame software
2.2.1 PLC-side: handler modules
2.2.2 CP486-side: MSDOS driver program
2.2.3 Various representations of data in memory
2.3 CP486-Requests for PLC (Page Frame 2 and 7 Functions)
2.3.1 Overview
2.3.2 Driver functions controlled by software interrupts
2.3.3 Turbo-Pascal interface (from Version 4.0)

2.3.4 Turbo-C Interface (2.0 and C++ from 1.0), Microsoft-C 6.0

2.4 Operation of the CP486COM in a WINDOWS environment

2-1

2-4
2-6
2-8
2-9
2-9
2-10
2-20
2-36

2-51

Manual Toolbox

Linkage with PLC by CP486COM

2 Linkage with PLC by CP486COM

2.1 General description

The data transfer between the CP486 and the PLC is controlled by means of handler modules on
the PLC side and by means of software-interrupts on the CP-side. The following routines are

available:

Operation on the PLC-side

Operation on the CP-side

Page

CP-request: read/write data

handler module is invoked

Software interrupt for DOS

frame2 |from/to PLC (CP486 active) |cyclically (FB1) call to driver for WIN
Page Transfer processimageto CP | handler module is invoked | Software interrupt or direct
frame 7 cyclicaly (FB1) access to the page frame

Tab. 2-1: Routines

The following data structures in the PLC may be accessed from the CP:

» single elements of the type bit, byte, word and double word, DB, DX, BA, BB, BT, BS, flag,
inputs, outputs, timers, counters

» Datablocks DB, DX, MB, T, Z, BA, BB, BT, BS, FB, FX, OB, PB, SB

The following functions are available from version 3.00 of the CPX86
(software CP4-SW593 version 3.00) and version 3.00 of the handler module
(CP4-SW977 and CP4-SW978 version 3.00).

The following description refers to the CPX86 program as COM-driver.

The following CPUs were tested: CPU943B, CPU944, CPU945, CPU928, CPU928B, CPU946/947.

The following types were tested:

g

write | Notes

Type
Bit

x

Word left-hand byte

Word right-hand byte

Word

Double word

Word (block)

specify length in words

Double word (block)

specify length in words

BS-areaBit

BS-arealeft-hand byte

BS-arearight-hand byte

BS-areaword

BS-area double word

BS-areaword (block)

specify length in words

Counter word (1 counter)

XX X[X[XXX X X X X X[X[X

XXX X X XXX X X X[X]| X

Rev. 00/33

VIPA

2-1

General description

Manual Toolbox

Type read | write | Notes

Counter double word| X X | Counters are rotated
(2 counters)

Counter word (block | X X

n-counter)

Timer word (1 timer)

Timer double word (2 timer)

timers are rotated

Timer word (block n-timer)

Flag bit

Flag byte

Flag word

Double flag word

Flag byte (block)

specify length in byte

Flag word (block)

specify length in byte

Input bit

Input byte

Input word

Input double word

Input byte (block)

specify length in words

Input word (block)

specify length in words

Output bit

Output byte

Output word

Output double word

Output byte (block)

specify length in words

Output word (block)

specify length in words

peripheral bit

periphera byte

peripheral word

peripheral double word

peripheral byte (block)

specify length in words

XX X XXX X X X X X X XXX X X X X X XXX X X X X X

XXX X X XXX X XXX XXX X X XXX X XXX X X XX

peripheral word (block) specify length in words

Absolute address byte The right-hand byte is read for CPUs with word
addressing

Absolute address word X X

Absolute address doubleword | X X

Absolute address block X X | specify data length in byte

FB - block X specify datalength in byte

OB - block X specify datalength in byte

PB - block X specify datalength in byte

2-2

VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

Type read | write | Notes

SB - block X specify datalength in byte

Tab. 2-2: Overview of the types that where tested

Runtime of the FB in the different CPUs, in ms:

CPU designation |Idle Transfer of 100 DW Transfer of 200 DW
944 0,2 1,6 2,2
928 1,0 45 52
928B 0,2 1,8 3,1
945 0,02 0,55 1,0
946/947 0,125 1,0 1,6

Tab. 2-3: Runtime of the FB in the different CPUs
ChangestotheV2.0driver

The constant PB_SNG was changed to PY_SNG.
The constant QB_SNG was changed to QY_SNG.
The constant BLOCK_ELM is no longer supported, use the constant B_ BLOCK instead.

Constants identified by SNG and _BLK have the same significance, i.e. both may be used for
block requests as well as single requests.

Application programs that read or write from/to the periphery, Q-periphery, flag blocks and absolute
addresses must be changed in accordance with the new list of constants and re-compiled.

Block requests with more than 245 words may cause a "page frame blockage" indication from the
driver for the PLC cycle. In this case, the request must be reissued.

For multi-processor operations, the CP requests are defined by means of the CP_CALL function. On
the PLC it is necessary to call FB 10 (read/write page frame) in OB 1 and the start-up OBs require
FB 20 (Synchron). In multi-processor operations, it is possible to implement communications from
aCPwithupto 4 CPUs.

Single processor operations may use the functions CP_read AG, CP_write AG, CP_readn AG,
CP_writen_AG or the function CP_CALL. If the CP_CALL function is used the CPU-No. must
aways be 0. The PLC program may use FB 1 or FB 10 and for synchronization purposes, it may use
FB2 or FB12.

Rev. 00/33 VIPA 23

Installation of the page frame software Manual Toolbox

2.2 Installation of the page frame software

2.2.1 PLC-side: handler modules

The handler modules FB1/FB10 and FB2/FB12 must be loaded into the PLC to facilitate
communications with the CP486. Handler module FB1 is started in OB1, and FB2 in the restart

modules (OB20, OB21 and OB22).

2.2.1.1 FB1/FB10 (CP-L/S), read and write from/to the CP

Name | Format |Description
ANSS KY Number of requests
PAA KF Processimage identifier
PAFE MB Flag byte for error messages
Tab. 2-4: Parameter list for starting FB1/FB10
ANSS AN The maximum number of requests that should be processed in the page
frame when the handler module is started
SS Thenumber of the base page frame

PAA Update the identifier of the process images in the page frame when the handler
module is being started

= 0 processimages must not be updated
#0 processimages will be updated

The value that is specified here is transferred to the process image and consists of
the page frame number + 1. Valid page frame numbers range from 4 - 7.

PAFE Error messages from the handler module
=0 noerror occurred
#0 an error occurred. The error number is supplied in the PAFE-

Scratch pads used:

byte

1 The maximum number of requests that should be
processed when a handler moduleis started is 0.

2 The maximum no. of requests that should be processed
when a handler moduleis started is larger than 127.

3 The base page frame number is not divisible by 8

5 The page frame has not been synchronized by the CP.

9 Page frame for process image not located in avalid area.

MB200-MB255

2-4

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.2.1.2 FB2/FB12 (SYNCHRON), Synchronization CP and AG

Name Format |Descri ption

SSNR KF Nunber of the base page frane
WART KF Type of synchroni zation

PAA KF Process inmage identifier

PAFE BY Fl ag byte for error nessages

Tab. 2-5; Parameter list for starting FB2/FB12

SSNR Base page frame number

WART =0 FB-SYNCHRON does not wait until the CP has synchronized every
individual page frame

#0 FB-SYNCHRON waits until the CP has synchronized every individual

page frame
PAA Number of page frame where process image must be stored. Vaid range is
between 4..7.
PAFE Error message from the handler module

=0 no error occurred
#0 anerror was detected:
3 number of base page frame isnot divisible by 8.

Scratch padsused: MB200-MB255

Rev. 00/33 VIPA 2.5

Installation of the page frame software Manual Toolbox

2.2.2 CP486-side: MSDOS driver program

A speciad communication driver must be loaded into the CP486 to facilitate communications
between the PLC and the CP by means of page frames. This driver has specia features for
communicating with VIPA handler modules. It provides a set of simple functions; i.e. the user no
longer needs to have detailed knowledge on the structure and the operation of page frames. The
software required for the control of the page frames is included with the driver. The software
currently supports page frame 2 (AG passive, CP active) and page frame X (process image). The
driver provides all page frame functions automatically and requires no configuration.

2.2.2.1 Driver installation

The driver isloaded when the CP486 is started; i.e. it isincluded in the file CONFIG.SY S. Please
note that the PLC usually starts the handler modules for synchronization purposes when a re-start
occurs. These modules will only wait a limited amount of time for a reaction from the CP if the
WART parameter was not set. The PLC will indicate "not synchronized" until the driver is started in
the CP. The following entry starts the driver:

DEVI CE = CP486COM EXE

This driver occupies app. 26KB of main memory (program and data) and must only be loaded once.
Any further attempts to load the driver are rejected with a message indicating that the driver has
aready been installed. This driver can only be removed from memory by re-booting the CP.

The COM-driver was specially developed for the CP486 module supplied by
VIPA GmbH and must not be used on other systems. If the driver is installed
on other PC-systems, including the 1386 or 1486 processors, the operation of
these systems is not guaranteed. The driver usually recognizes that the
processor is not a CP.

2.6 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.2.2.2 DOS interrupts used by the driver

The driver occupies a number of software interrupts , which are used for communicating with the
application software in the CP module:

e INT 1Ch Timer-Interrupt

Regular cyclic checks of the page frame are controlled by the "ticker-interrupt" 1Ch as well
asthe DOS-idleinterrupt. For example, this may be used on aregular basis to check whether
the PLC wishes to re-synchronize the page frames. Once the CP-specific functions have
been completed the original interrupt handler routine is executed (interrupt service routine).

e INT 74h (IRQ 12):
The CP486 uses hardware-IRQ 12 that occupies the software-interrupt 74h. This interrupt is
always activated when BASP is active in the PLC or when the highest memory location of
any page frame (byte 1023) was written by the PLC. By using this interrupt, the CP can react
quickly to requests received from the PLC. Upon completion of the CP-specific function, the
original interrupt service routine is executed. For this reason, it is possible that a number of
devices use IRQ 12.

* INT 78h Service-Interrupt:

This interrupt must be used by the application software in the CP to access the driver
functions, e.g. where data must be transferred to/from the PLC via page frame 2. It is
possible to access different functions by specifying different parameters for the processor
registers. If INT 78 is supplied with register values that are not valid for CP486
communications, the original interrupt service routine will be executed.

Rev. 00/33 VIPA 27

Installation of the page frame software Manual Toolbox

2.2.3 Various representations of data in memory

The different rules for representing words and double words (long words) in the CP and in the PLC
must be met when data is transferred between the CP and the PLC.

Data words are stored differently in the CP than in the PLC. The positions of the most significant
byte (high-byte) and the least significant byte (low-byte) have been swapped. In the case of double
words, the sequence of all 4 bytes has been reversed. Where data is transferred between the PLC and
the CP, the position of relevant bytes must be swapped at some time, as the transferred data would
otherwise be invalid. Wherever possible, the COM driver will adjust the data automaticaly as
required.

The driver will perform an automatic swap for al data transfers to/from page frame 2 and 7.

» Dataisnot modified whileit is being transferred.

» Themost significant and least significant bytes of words are swapped during
transfer.

» The sequence of all 4 bytes of along dataword is reversed during transfer.

Representation of datain thePLC

Addressesn byte representation byte

Addressn high-byte

Addressn+1 low-byte representation byte

Addressn high-byte high-word

Address n+1 low-byte high-word

Address n+2 high-byte low-word representation double
word

Address n+3 low-byte low-word

Representation of data in the CP

Address n byte representation byte

Addressn low-byte

Address n+1 high-byte representation word

Addressn low-byte low-word

Address n+1 high-byte low-word

Address n+2 low-byte high-word representation double
word

Address n+3 high-byte high-word

2.8 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3 CP486-Requests for PLC (Page Frame 2 and 7 Functions)

2.3.1 Overview

The CP486 driver handles the requests that were initiated from the CP. This driver provides a
number of functions for page frames 2 and 7. These functions may be used to read data from a PLC
or write data to a PLC from the application program running on the CP486 . All these functions are
initiated by means of software interrupt 78h. From version 3.10 this calling structure has been
expanded to include a structure for the transfer of data.

When the interrupt is activated the required parameters are sent and received via the processor
registers. The function description contains a description of the allocation of these registers. The
interfaces cater for Turbo-Pascal, Turbo-C and C++ as well as Microsoft-C. Functions are available
for reading and writing data from/to the PLC, for interrogating statuses and for termination
functions. Data transfer functions are classified according to the type of transfer. Here we
differentiate between single transfers and blocked transfers. Different functions are performed on
the basis of "requests’. When a function is activated, it will return a request number, which may be
used to interrogate the status of the respective process. Page frame 2 can handle up to 90
simultaneous requests.

Thefollowing functions are available

Pageframe Function no. Function
none $00 Status request
2 $21 Read/write a single element to/from the PLC
2 $21 Read/write a block to/from the PLC
2 $20 Status request for the read/write request
2 $28 Termination of al read/write requests
2 $7f Initiation by means of a structure
7 $70 Status request for the process image
7 $71 Read the process image area

Tab. 2-6: Function description

Rev. 00/33 VIPA 29

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.2 Driver functions controlled by software interrupts

2.3.2.1 CP-status request
The application software can use this function to determine which CPx86 drivers have been loaded.

Register IN high OouT low
AX $00 $C386

BX

CX

DX

AX C386h flag indicating that the CP-software has been |oaded.

The function returns a0 if the driver has been loaded, otherwise it returns a -1.
This function does not initialize page frames.

2-10 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.2.2 Reading a single element from the PLC

You may use this function to read a single data element (bit, byte, word, ...) from the PLC. The
function initiates the request and immediately returns to the caller. Y ou can then read the actual data
by means of the "status request” function (see chapter 2.3.2.6).

Register high In low Out
AX $21 type stat us
BX si ze bst
CX adr
DX - bi t
Parameters
type Data element type for single elements in the PLC (DB, MB..)
(see chapter 2.3.3.11.2)
si ze Element sizeindicator (bit, byte ...) see chapter 2.3.3.11.1
bst Module number, only for element type DB or DX.
For element type "absolute”, this contains the most significant bits of adr .
adr Start address in the range
bi t Bit number when element si ze ishit.
st at us <0 error number, when an error has occurred.
Error numbers of the PLC are added to FFOOh
1..255 Request number which may be used to interrogate the status

Note

This function does not return any datal Any data may be retrieved by issuing a call to the
status request function if the request was "completed without error”.

Read requests that have been completed are blocked to ensure that it is not overwritten by a
new request before the returned data has been retrieved. Once a request has been started, its
status must be interrogated until the request returns "completed with error" or "completed
without error”. If the returned status is "completed without error" the respective data is
copied to the specified address in the CP. If the status is not interrogated, the request remains
locked and no further read requests can be started, even if al requests for the page frame
have been compl eted.

Rev. 00/33 VIPA 211

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.2.3 Reading a block from the PLC

You can use this function to read an entire block of data from the PLC. The function initiates the
request and returns immediately to the caller. You can access the returned data by means of the
"status request” function (see chapter 2.3.2.6).

Register high In low Out
AX $21 type st at us
BX size bst
CX adr
DX | en
Parameters
type Element type for the data of asingle element in the PLC (DB, MB...)
(see chapter 2.3.3.11.2)
si ze Element size of block data. Indicator whether individual bytes are
swapped:

Note

07h Datablock consisting of bytes (no swapping)
17h Datablock consisting of words (high and low byte are swapped)
27h Datablock consisting of double words (all 4 bytes are exchanged)

bst Module number, element type DB, DX , FX.

For element type "absolute”, this contains the most significant bits of adr .
adr Start address in the range
I en Datalength in words or bytes. The value in the PLC determines the length in

bytes or words, e.g. timer, counter, DW length specified in words or for flags
and outputs, in bytes.

st at us <0 error number, when an error has occurred
1..255 request number which may be used to interrogate the status

The type of data must be specified in the block (bytes, words, double words) to ensure that
data can be aligned automatically during transfer. Each block can only contain data of the
same type. For words and double words, the data bytes are swapped as required.

This function does not return any datal Any data may be retrieved by issuing a cal to the
status request function if the request was "completed without error”.

Read requests that have been completes are blocked to ensure that it is not overwritten by a
new request before the returned data has been retrieved. Once a request has been started, its
status must be interrogated until the request returns "completed with error" or "completed
without error”. If the returned status is "completed without error" the respective data is
copied to the specified address in the CP. If the status is not interrogated, the request remains
locked and no further read requests can be started, even if al requests for the page frame
have been compl eted.

2-12

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.2.4 Writing a variable to the PLC

Thisfunction isused to write asingle data element (bit, byte, word,...) into the memory of the PLC.
The call to this function must include the address of the variable that must be written. The function
writes the value into the page frame and does not wait for the PLC to fetch the data, it returnsto the
caller immediately.

Register high In low Out
AX $21 type stat us
BX si ze bst
CX adr
DX - bi t
S of f set
DS segnment
Parameters
type Data element type for single elementsin the PLC (DB, MB ...)
(see chapter 2.3.3.11.2)
si ze Element sizeindicator (bit, byte, ...), see chapter 2.3.3.11.1
bst Module number, only for element type DB or DX
For element type "absolute”, this contains the most significant bits of adr .
adr Start address in the range
bi t Bit-number if the element si ze ishit.
of f set Offset of the variables address (in the CP)
segnent Segment of the variable address (in the CP)
status <0 error number, when an error has occurred
1-255 request number which may be used to interrogate the status

Note

For write requests, the page frame is locked in the same manner as for read requests. For
this reason the requests status should also be interrogated until the returned status is
"completed with error" or "completed without error”.

The element size determines how the pointer to the datain the CP is interpreted.

Bit:

The pointer represents the address of abyte. The bit is read from bit-number O.

Byte, left byte, right byte:

the pointer represents the address of a byte. The byte is read from the memory location.
Word:

The pointer represents the address of a word. High and low byte are swapped during the
transfer.

Double word/long word:

The pointer represents the address of along word. The long word is read and the sequence
of all 4 bytesisreversed.

Rev. 00/33

VIPA 2-13

CP486-Requests for PLC (Page Frame 2 and 7 Functions)

Manual Toolbox

2.3.2.5 Writing a block to the PLC

Y ou can write an entire data block into the PLC by means of this function. The call to this function
must include a pointer to the data block that must be written. The function writes the data into the
page frame and returns immediately to the caler. It does not wait until the PLC has fetched the data.
The data block in the CP is again available and could, for instance, be overwritten.

Register high In low
AX $21 type
BX Si ze bst
CX adr
DX | en
Sl of f set
DS segnment
Parameters
type Element type of the data for block elementsin the PLC
(see chapter 2.3.3.11.3)
si ze Element size of the block data. Indicator whether single bytes must be
swapped.

07h Datablock consisting of bytes
17h Datablock consisting of words
27h Datablock consisting of double words

bst Module number, only for element types DB, DX, FB.
For element type "absolute”, this contains the most significant bits of adr .

adr Start address in the range
I en Number of data elements in words or bytes (see reading blocks)
of f set Offset of the block address (in the CP)
segment Segment of the block address (in the CP)
st at us <0 error number, when an error has occurred
1..255 request number which may be used to interrogate the status

Note

The type of datain the block (bytes, words, double words) must be specified so that the data
may be aligned automatically . A block may only contain data of a single type. In the case of
words and double words, the data bytes are swapped as required.

A block write request locks the page frame. Once a request has been started, its status must
be interrogated until the request returns "completed with error" or "completed without error”.
If the status returned by the request is "complete without error”, the data is copied into the
specified address in the PLC. If the status is not interrogated, the request remains locked and
no further read requests can be started, even if al requests for the page frame have been

completed.

2-14 VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.2.6 Reading the status of a request

This function returns the status of a request that was started earlier. For read request variables and
block read requests, the function will also copy the data into a specified address in the CP, if the
returned status is " complete without error”.

Register high In low Out
AX $20 a_no st at us
S| of f set
DS segnment
Parameters

fn Function number for the status request

a_no request number

of f set Offset of the datain the PC.

se

st

of f set must only be specified for read requests (variables and block).

gnent Segment of the data address in the PC.
segnent must only be specified for read requests (variables and block).

at us <0 reguest "complete with error"
Error messages from the PLC are added to FFOOh.
1 request processing "not completed”
2 regquest status "undefined"”
3 request "complete without error”

Procedurefor statusrequests

If the request returns processing "not completed”, the status function must be called until the
status changes.

For write requests: if the request returns "complete without errors’, the data was written
into the PLC.

For read requests: if the request returns "complete without errors’ and a pointer to the
data was specified, then the data was successfully copied into the respective addressin the
CP. The data bytes were swapped in accordance with the if the specified size of the data.

If the status returned by the request is "undefined”, then the request has aready been
terminated but it has not yet been overwritten by a new request. If this was a read request
and the specified pointer was not equal to NULL, then the returned datais copied into the
specified destination address.

If the status returned by the request is "complete with errors’ then the request block was
released if the request was aread request or a block request.

Rev. 00/33 VIPA 2-15

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

» The pointer for read requests must be interpreted according to the specified size of the

element:

Bit :

The pointer represents the address of abyte. The bit iswritten to bit-number
0 and the entire byte is overwritten.

Byte, left byte, right byte:

the pointer represents the address of a byte. The byte is written into the
memory location.

Word:
The pointer represents the address of a word. The high and low bytes are
swapped during transfer.

Double word/long word:
The pointer represents the address of along word. The long word is read and
the sequence of al 4 bytesisreversed.

» The pointer for read requests for a data block must be interpreted according to the
specified size of the element:

Byte:
The pointer represents the address of a block of bytes. All the bytes are
transferred from the PLC and their sequence is not changed.

Word:
The pointer represents the address of a block of words. The high and low
bytes of every word are swapped during transfer.

Double word/long word:
The pointer represents the address of ablock of long words. The sequence of
al 4 bytes of every long word is reversed during transfer.

2-16

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.2.7 Terminate all requests of a page frame

Register high In low Out
AX fn st at us
Parameters
fn Function number for status-request
$28 termination of all read requests
status <0 error number, when an error has occurred
0 al requests were terminated.

Note

This function may be used to terminate any write or read request that has no been
compl eted.

The function applies equally to variable and to block requests. It always returns a value of 0,
even if no requests were active in the page frame.

2.3.2.8 Read process image status

Register high In low Out
AX $70 - stat us
Parameters
st at us 0 process image not available
1..255 up to date process image counter

Note

This function may be used to read the up to date value of the process image counter (page
frame 7 address 3FEh). A processimageis not available if the returned valueisO.

Rev. 00/33 VIPA 2-17

CP486-Requests for PLC (Page Frame 2 and 7 Functions)

Manual Toolbox

2.3.2.9 Read a from the process image area

This function may be used to read from the current process image area. The length of the area is
monitored while it is being accessed.

Register high In low Out
AX $71 type st at us
BX adr
CX | en
Sl of f set
DS segnment
Parameters
type Element type of the data of the processimage (EB, MB)
adr Start addressin the rage
I en Number of data elements in bytes or words (dependingont ype)
of f set Offset of the data addressin the PC
segnent Segment of the data address in the PC
st at us <0 eror number, when an error has occurred
=0 noprocessimage available
>0 counter for process image (as for the status function)

Note

The length for timer and counter accesses is specified in words, and for all other typesit is
specified in bytes. The high and low bytes of timer and counter words are swapped so that
the data may be processed by the PC.

If thetype" is specified as "absolut”, any section spanning arbitrary partitions of the process
image may be read. The length is specified in bytes. If the range for a timer or counter is
read, the high and low bytes are swapped.

No. | Type

06 | Counter (specify length in words)

07 | Timer (specify length in words)

08 |Flag (Ilength in bytes)

09 |EB (length in bytes)

OA |AB (length in bytes)

OF | Absolute access to process image (length in bytes)

Tab. 2-7: Element types for processimage

2-18

VIPA

Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

2.3.2.10 Error numbers of the CP for page frames 2, 3 and 7

hex dec. | Description
FFFFh -1 |invalid element type
FFFEh -2 |Incorrect length (e.g. addresstoo large, bit number too large)
FFFDh -3 |Invalid element size (incorrect value for single or for block request)
FFFCh -4 | Element type not available for the current CPU
FFFBh -5 | Page frame full, new requests can not be entered

Request and block request must be started
FFFAh -6 | No accessto apage frame for 10 sec. (PLC probably stopped)
FFF9h -7 | Request/page frame till locked

(request status has not been interrogated to remove the lock).
FFF8h -8 |incorrect request number for status function (e.g. request no. > 255)
FFF7h -9 |incorrect source data pointer

(write request with NULL address)
FFF6h -10 | Request not processed (unused!)
FFh 255 | Invalid function call
EEh 238 | Request terminated during initialization

Tab. 2-8: Error numbers of the CP for page frames 2, 3 and 7
Rev. 00/33 VIPA 2-19

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.3 Turbo-Pascal interface (from Version 4.0)

A Turbo-Pascal-Unit was created to provide access to the COM driver by means of function calls.
This unit makes all the functions of the service interrupts INT 78 available. Every function of the
driver is provided with an equivalent Pascal procedure that manages the registers, calls the interrupt
and returns values as required. In this way, users that are not accustomed to low-level programming
may also make use of the facilities provided by the driver.

All required functions, data types and constants are contained in the CP486LIB unit. This unit must
be included in the respective Pascal application program by means of "USES CP486Lib". The user
must aso ensure that the compiled unit CP486LIB.TPU islocated in the directory where Turbo-
Pascal searches for units. The respective settings are made via menu items "Options | Directories |
EXE & TPU-directory" (refer to the Turbo Pascal manual or help functions).

The following sections provide a short overview of the available functions. A detailed description
with al the relevant information can be found in the functional description located in preceding

paragraphs.

2.3.3.1 Function CP status request

FUNCTION CP_Info (VAR inforec : CP486l nfoRec) : | NTEGER

Data structures
TYPE CP4861 nf oRec =
RECORD

CP_id : WORD; (* 1d: CP486 val ue = $C386 *)
VGA ver, BIOS ver : BYTE; * *
DRV _ver: BYTE; (* *)
CPU_AG : BYTE; * *)

* *)

CP_reg, S5 reg : BYTE
END;

Data structure for the general status info function. The components are completed according to the
values of the CP486.

This function calls the driver function "general status information”. The function is preceded by an
installation check of the driver. If the driver was not installed, the function returns a value of -1. If
the COM driver was installed properly, the function returns a value of 0. The CP_id component
always contains the identifier $C386, other components are not changed.

2-20 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.3.2 Reading a single element from the PLC

FUNCTI ON CP_read_AG (si ze, type, bst : BYTE, adr : |ongint;
bit : BYTE): | NTEGER;

Par ameter
si ze Element size of single elelements (see chapter 2.3.3.11.1)
type Element type for single elements (see chapter 2.3.3.11.2)
bst Module number
adr Address in the module or absolute address
bi t Bit number

Returns

Request number or negative number for errors.

This function calls the driver function "read a single element from the PLC". The call assigns
the specified parameters to the respective registers. Chapter 2.3.3.11 describes the
significance of the individual parameters. If the driver detects an error, the respective error
message (negative number) is returned as function value. If the function is completed
without errors, the request number is returned as function value.

Calling procedure
The following scheme should be applied when processing the driver function, otherwise the
page frame might, be locked:

VAR a_no, (* request number for read request *)
stat : | NTEGER, (* instantaneous request status *
val ue : BYTE; (* value read fromPLC *)

BEG N

(*Start the request *)
a no := CP_read AGQ LBYTE ELM DB SNG 10, 1, 0);

IFano<O0 (*an error occurred *)
THEN WitelLn('' Request termnated due to error: ', a_nho)
ELSE BEG N (*a_no contains the request number *)
REPEAT
stat := CP_stat_AQ a_no, Addr(value)); (*fetch request

status/data *)

UNTIL stat <> REQ WRKN; (*repeat until request is conplete
with or without errors *)

CASE stat OF
REQ NO ERR WitelLn('Data: ', value, ' was read');
REQ UNDEF: Wi telLn(' Request-status undefined, data:

",value,' was read');
ELSE WitelLn(' Request conmpleted with error: ', stat)

END;

END;
END.

Rev. 00/33 VIPA 221

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.3.3 Reading a block from the PLC
FUNCTI ON CP_readn_AG (size, type, bst:BYTE, adr : |ongint;

Parameters
si ze
type
bst
adr
I en

Returns

len : WORD) : integer;

Data type of the block elements (see chapter 2.3.3.11.4)
Element type of the block elements (see chapter 2.3.3.11.3)
Module number

Address in the module or absolute address

Length of datain words or bytes, depending on element type

Request number or negative number for errors.

This function calls the driver function "Read a block from the PLC". The call assigns the
values supplied in parameters to the registers. Parameters are described in chapter 2.3.3.11 .
If the driver should detect an error, an appropriate error message (negative number) is
returned as a function value. If the function is processed without errors, the request number
isreturned as function value.

Calling procedure

The following scheme should be applied when processing the driver function, otherwise the
page frame might, be locked:

VAR a_no, (*Request nunber for the read request *)
stat : | NTEGER, (*up to date request status *)
buff : ARRAY[1..100] OF INTEGER(*data read fromthe PLC *)
BEG N
(*Start the request *)
a no := CP_readn_AG WBLOCK, DB BLK, 5, 10, 100);

IFano<O0 (*an error has occurred *)

THEN WitelLn(' Request conpleted with errors: ', a_no)

ELSE BEG N (*a_no contains the request number *)
REPEAT

stat := CP_stat_AQ a_no, Addr(buff)); (*Fetch the
request status/data *)
UNTIL stat <> REQ WRKN;, (*repeat until the request conpletes

with or without error *)
CASE stat OF
REQ NO ERR: WiteLn(' Buffer read ');
REQ_UNDEF: WitelLn(' Undefined request status
buf fer was read');
ELSE WiteLn(' Request conpleted with error:
', stat);
END;
END;

END.

2-22

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.3.4 Writing a single element to the PLC

FUNCTION CP_wite AG (size, type, bst : BYTE, adr: |ongint;
bit: BYTE;, p: PO NTER): integer;

Parameter
si ze Element size (see chapter 2.3.3.11.1)
type Element type single elements (see chapter 2.3.3.11.2)
bst M odule number
adr Address in the module or absolute address
bi t Bit number
p Pointer to write data
if element sizeisbit or byte: pointer to abyte
if element size isword: pointer to aword
if element size is double word: pointer to a double word
Returns

Request number or negative number for errors.

This function calls the driver function "Write a single element to the PLC". The call assigns
the specified parameters to the respective registers. Parameters are described in chapter
2.3.3.11 . If the driver should detect an error, an appropriate error message (negative
number) is returned as a function value. If the function is processed without errors, the
request number is returned as function value.

Calling procedure

VAR a_no, (*Request nunber for the wite request *)
stat : | NTEGER; (*up to date request status *
val ue : BYTE; (*value to be witten *)

BEG N

(;"Sfart the request *)
val ue : = $7E;
ano :=CP wite AGLBYTE ELM DB SNG 10, 1, 0, Addr(value));

IFano<O0 (*an error has occurred *)
THEN WiteLn(' Request conpleted with errors: ', a_no)
ELSE BEG N (*a_no contains the request nunber *)
REPEAT
stat := CP_stat_AG a_no, NL); (* read the request
st at us *)
UNTIL stat <> REQ WRKN; (* repeat until request conpletes
with or without error *)
CASE stat OF
REQ NO ERR: WitelLn('Data: ', value,' was witten');
REQ UNDEF: WitelLn(' Undefined request status.');
ELSE WitelLn(' Request conpleted with error: ',
stat)
END;
END;
End.

Rev. 00/33 VIPA 223

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.3.5 Writing a block to the PLC

FUNCTION CP_witen_AG (size, type, bst : BYTE, adr : |ongint;
len : word; p : PONTER) : integer;

Parameters
si ze Datatype of the block elements (see chapter 2.3.3.11.4)
type Element type block elements (see chapter 2.3.3.11.3)
bst M odule number
adr Address in the module or absolute address
I en Length of datain words or bytes, depending on element type
p Pointer to write data

Returns

Request number or negative number for errors.

This function calls the driver function "Write a block to the PLC". The call assigns the
specified parameters to the respective registers. Parameters are described in chapter 2.3.3.11.

If the driver should detect an error, an appropriate error message (negative number) is
returned as a function value. If the function is processed without errors, the request number
isreturned as function value.

Calling procedure

VAR a_no, (*Request nunber for the read request *)
stat : | NTEGER; (*up to date request status *
i : | NTEGER
buff : ARRAY[1l..100] OF INTEGER, (* data to be written *)
BEG N
FORi := 1 TO 100 DO
buff[i] :=1i; (* assign data to data buffer *)

(* Start the request *)
a no :=CP witen A B BLOCK, DB BLK, 5, 10, 100, Addr(buff));

IFano<O0 (* an error has occurred *)
THEN WiteLn(' Request conpleted with errors: ', a_no)
ELSE BEG N (* a_no contains the request nunber *)
REPEAT
stat := CP_stat_AG a_no, NL); (* read the request
st at us *)
UNTI L stat <> REQ WRKN, (* repeat until request

conpletes with or without errors *)

CASE stat OF
REQ NO ERR: WitelLn('Buffer witten');
REQ UNDEF: WiteLn(' Undefined request status.');
ELSE WiteLn(' Request conpleted with error:', stat)
END;
END;
END.

2-24 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.3.6 Read the status of a request
FUNCTI ON CP_stat _AG (a_no : |INTEGER, p: PO NTER): | NTECGER;

Parameter
a_no Request number of the respective request
p Pointer to the data or data block located in the PC's memory
(must only be - completed for read requests with single or block)
if element sizeisbit or byte pointer to abyte
if element sizeisword pointer to aword
if element size is double word pointer to a double word
if element sizeisblock pointer to buffer for data block
Returns

Request status or negative number when an error has occurred.

This function calls the driver function "Status request for a request”. The call assigns the
specified parameters to the respective registers. Parameters are described in chapter 2.3.3.11
. If the driver should detect an error, an appropriate error message (negative number) is
returned as a function value. If the function is processed without errors, the request status
(see chapter 2.3.3.11.4) isreturned.

Rev. 00/33 VIPA 2-25

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.3.7 Terminating all requests of a page frame

FUNCTI ON CP_cncl _AG (a_no : BYTE): | NTECGER;

Parameter
a_no Identifier for page frame 2
$28 terminate all active requests of page frame 2
Returns

0 or negative number if an error has occurred.

This function calls the driver function "Terminate al requests of a page frame". The call
assigns the specified parameters to the respective registers. Parameters are described in
chapter 2.3.3.11 If the driver should detect an error, an appropriate error message (negative
number) is returned as a function value. If the function is processed without errors, i.e. all
requests were terminated properly, then the request returns a value of 0.

2.3.3.8 Read satus of process image

FUNCTI ON CP_stat_PA : BYTE

Returns
Process image counter

This function calls the driver function "Request status of process image'. The function
returns the process image counter.

2.3.3.9 Read the process image area

FUNCTI ON CP_read PA(type : BYTE, adr, len : WORD, p : PO NTER)

| NTEGER,;
Parameters
type Element type process image (see chapter 2.3.3.11.6)
adr Addressin the area or absolute address
I en Length of data (bytes or words) depending on type
p Pointer to data buffer in memory
Returns

Process image counter

This function calls the driver function "Read an area of the processimage". The call assigns
the specified parameters to the respective registers. Parameters are described in chapter
2.3.3.11. If the driver should detect an error, an appropriate error message (negative number)
isreturned as a function value. If the function is processed without errors, the request returns
the up to date value of the process image counter.

2-26 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.3.10 Standard functions
FUNCTI ON CP_CALL (VAR setwert : CPX86 PARAVETER REC) : | NTEGER

Data structure
TYPE CPX86_PARAMETER REC =
RECORD
El enenttyp : byte; (* Element type see chapter 2.3.3.11.2 or
2.3.3.11.3 *)
Auftrag : byte; (* Request type see chapter 2.3.3.11.7%)
Baust ei nnunmer : byte; (*Number of the data nmodule or O for
flags, outputs etc. *)
Kennung : byte; (*El enent size or data type see
chapter 2.3.3.11.1 or 2.3.3.11.4 *)
Adr esse : integer; (* Nunber of the first data el ement *)
Len : integer; (* Length of the data *)
ptr . pointer; (* Pointer to DOS-data always "nil" *)
ptr_wn . pointer; (* Pointer to WN-data always "nil" *)
upro_zei ger : longint; (*Pointer to subroutine, unused *)
CPU : byte; (* CPU nunber, 0-3, 0 for a single CPU 0*)
Reserved : byte; (* Reserved byte*)
Fehl er : integer; (* Returned byte for errors¥*)
case | nteger of
0: (Dat enByt e : ARRAY[1..1000] of byte);
(* Data transfer fromto the procedure, in byte (8 Bit) *)
1: (Dat enWor t : ARRAY[1..500] of integer);
(* Data transfer fromto the procedure, as integer (16 Bit)*)
2: (Dat enDoppel : ARRAY[1..250] of longint);
(* Data transfer fromto the procedure, as Longint (32 Bit)*)
END;

Data structure for the standard function. Values are assigned to the components as required by the
function that is being executed.

This function can be used instead of all the previously described functions.

The functionswrite AG or writen_AG enters all write datainto the respective ARRAY and issues a
call to the function CP_CALL.

The functions read AG or. readn_AG return all data after the function CP_CALL has been
completed (as function CP_stat_ AG) in the respective ARRAY .

Rev. 00/33 VIPA 2-27

CP486-Requests for PLC (Page Frame 2 and 7 Functions)

Manual Toolbox

Calling procedure

(*Tur bo- Pascal exanple for comunicating via page frame 2 with 2 CPUs *)

program Test ;

USES DCS, crt, CP486LI B;

VAR
retl, ret?2 . integer;
a_no . BYTE;
i, zaehl : VORD;
setwert . Cpx86_paraneter_rec;
begi n
clrscr;
witeln;

witeln(' This DEMO requires FB1 on the PLC side,"');
witeln(' which is called cyclically by OBl');
del ay(2000);

r epeat
begi n

(* Structure for predefined request *)
setwert.elenenttyp := DB _SNG (* El enent type acc. to table *)

setwert.auftrag : = READ AG (*Request type *)
setwert . baust ei nnutmer : = 10; (* Nunmber of the data nodul e
setwert. kennung : = W BLOCK; (* Elemet size acc. to table *)
setwert.adresse : = 0; (* Start address in the PLC *)
setwert.len = 50; (* Length for data transfer
setwert.cpu = 0; (* CPU-number 0 for first CPU *)
retl := CP_CALL(setwert); (* Transfer data to driver *)

(* Structure for request has been preset *)
setwert.elenenttyp : = DB_SNG (* Element type acc. to table *)

setwert.auftrag : = READ AG (* Request type *)
setwert. baust ei nnutmer : = 10; (* Nunber of the data nmodule *)
setwert. kennung : = WBLOCK; (* Elenent size acc. to table *)
setwert.adresse : = 0; (* Start address in PLC *)
setwert.len = 50; (* Length of transfer *)
setwert.cpu = 1; (* CPU nunber 1 for second CPU *)
ret2 := CP_CALL(setwert); (* Transfer data to driver *)
IFretl <O (* An error has occurred *)
THEN wite(' Request conpleted with errors: ',retl,’' ")
ELSE
begi n
ano :=retl; (* Transfer the request numnber *)
r epeat
setwert.elenenttyp := a_no; (*Request nunber into structure*)
setwert.auftrag := statr_AG (* Request type *)
setwert.cpu = 0; (* Set CPU nunber *
setwert.ptr =nil; (* Delete the pointer *)
retl := cp_call(setwert); (* Transfer data to driver *)
until (retl <> 1);
if retl = 3 then (* Function executed w thout error *)
begi n
got oxy(1, 6); (* Position the cursor *)
wite('Data : ");
for i :=1 to 50 do
begi n

2-28

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

wite(setwert.datenwort[i]:5," "); (* Display the data
on screen *)
end;
end;
end;
IF ret2< 0 (* An error has occurred *)
THEN wite(' Request terminated with error: ' ,ret2,’)
ELSE
begi n
a_no :=retz2; (* Transfer request nunber *)
r epeat
setwert.elenmenttyp := a_no; (* Set request no. into structure *)
setwert.auftrag := statr_AG (* Request type *)
setwert.cpu = 1; (* Enter CPU nunber *)
setwert.ptr =nil; (* Cear the pointer *)
ret2 := cp_call(setwert); (* Transfer data to driver *)
until (retl <> 1);
if ret2 = 3 then (* Function conpleted without error *)
begi n
got oxy(1, 6); (* Position the cursor *)
wite('Daten : ")
for i := 1 to 50 do
begi n
wite(setwert.datenwort[i]:5," ");(* Display data on screen *)
end;
end;
end;

end;
until keypressed;

end.

Rev. 00/33 VIPA

2-29

CP486-Requests for PLC (Page Frame 2 and 7 Functions)

Manual Toolbox

2.3.3.11 Constants

The following constants have already been defined. It is recommended that these are used, as they
are more readable and result in a clearer program. The resulting program can then easily be adapted

to cater for changesin the COM driver.

2.3.3.11.1 Constants for element sizes

CONST
BI T_ELM = $00; (* bit %)
SEMA ELM = $01; (* bit as semaphore *)
BYTE_ELM = $02; (* byte *)
LBYTE ELM = $02; (* left byte of a word *)
RBYTE_ELM = $03; (* right byte of a Wrd *)
WORD ELM = $04; (* word *)
DWORD _ELM = $05; (* doubl e word *)
BLOCK_ELM = $07; (* block *)

2.3.3.11.2 Constants for element types of single elements

CONST
DB_SNG = $00; (* DB %)
DX_SNG = $01; (* DB in external nenory *)
BA_SNG = $02; (* BA *)
BB _SNG = $03; (* BB *)
BS_SNG = $04; (* BS *)
BT_SNG = $05; (* BT *)
Z SNG = $06; (* Counter *)
T _SNG = $07; (* Timer *)
MB_SNG = $08; (* Flag *)
EB SNG = $09; (* Input area *)
AB SNG = $0A (* Qutput area *)
PY_SNG = $0B; (* P-periphery *)
QY_SNG = $0G; (* Q periphery *)
ABS_ SNG = $0F; (* Absol ute nenory *)
FB_SNG = $10; (* FB *)
FX_SNG = $11; (* FB in external nenory *)
OB_SNG = $12; (* OB *)
PB_SNG = $13; (* PB ")
SB_SNG = $14; * SB *)
RB_FREE = $0E; * Code for request block free?*)

2.30 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

2.3.3.11.3 Constants for element types of block elements

CONST
DB_BLK = $00;
DX_BLK = $01;
BA_BLK = $02;
BB_BLK = $03;
BS_BLK = $04;
BT_BLK = $05;
Z BLK = $06;
T_BLK = $07;
MB_BLK = $08;
EB_BLK = $09;
AB_BLK = $0A;
PY_BLK = $0B;
QY_BLK = $0C;
ABS_BLK = $0F;
FB_BLK = $10;
FX_BLK = $11;
OB_BLK = $12;
PB_BLK = $13;
SB_BLK = $14;

2.3.3.11.4 Constants for the data type of block elements

CONST
B_BLOCK = $07;
W BLOCK = $17;
D_BLOCK = $27;

2.3.3.11.5 Flag for request status
CONST

REQ WVRKN = $01;
REQ UNDEF = $02;
REQ NO ERR = $03;

(* DB *
* DB in external nmenory *)
* BA *)
* BB *)
* BS *)
* BT *)
* Counter *)
* Ti mer *)
* Fl ag *)
(* I'nput area *)
* Qut put area *)
* P-periphery *)
* Q periphery *)
* Absol ute nmenory *)
* FB *)
* FB in external nenory *)
* OB *)
* PB *)
* SB *)
(* Type: Block of bytes *)
(* Type: Block of words *)
(* Type: Block of long words *)

(*
(*

* Request being processed

Undefi ned request status
Request conpl .

2.3.3.11.6 Constants for the element types of the process image

CONST
Z PA = $06;
T_PA = $07;
MB_PA = $08;
EB_PA = $09;
AB_PA = $0A;
ABS_PA = $0F;

* Count er

Ti mer

Fl ag

| nput area

Qut put area

absolute block in the PA

wi t hout err.

Rev. 00/33

VIPA

2-31

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.3.11.7 Request type for CP__ Call

CONST

CET_I NFO
STATR_AG
READ_AG

WRI TE_AG
CNCLR_AG
STAT_PA
READ_PA
HANDLE_ St r uct

$00
$20
$21
$21
$28
$70
$71
$7F (* dx:bx = pointer to CP486_
Par amet er _Rec *)

2.3.3.11.8 Constants for error messages: page frame 2 and 7

CONST
ERR_S5_TYP = $01;

ERR S5 _BST

$02;

ERR S5 _ELM = $03;

(* invalid element type *)

An attempt was made to access the data of a PLC of the
115U series during a single element request with element
types DX_SNG, BA_SNG, BB_SNG, BT _SNG or
QB_SNG, or for a block element request with element
types DX_BLK, BA_BLK, BB _BLK, BT BLK or
FX_BLK. These element types do not exist in this type of
PLC.

Remedy: modify the "t ype" parameter in the function call
to the PC application software.

(* Module does not exist *)

An attempt was made to access a module that does not
exist whilst using a single element request with element
type DB_SNG or. ablock element type DB_BLK.

Remedy: define a data module in the PLC or modify the
"bst" parameter in the function call to the PC-
application software.

(* Element does not exist *)

An attempt was made to access non-existing datain a DB
for a single element request using element type DB_SNG
or block element request with element type DB_BLK.

Remedy: increase the length of the data module in the PLC
or modify the parameters "adr " or "l en" in the
function call to the PC application software.

An attempt was made to access timer or counter numbers

> 127 using element typesZ_SNG or T_SNG with asingle
element request.

Remedy: modify the "adr " parameter in the function call
to the PC application program.

2-32

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

ERR S5_SI ZE

= $04;

An attempt was made to access a flag with a number > 199
for an element size specified as byte and an element type
MB_SNG, anumber > 198 for an element size specified as
word or a number > 196 for an element size specified as
double word.

Remedy: check the value specified for the "adr " parameter
in the function cal to the PC application
software.

An attempt was made to access the process image of the
I/O areawith anumber > 127 for an element size specified
as byte and an element type EB_ - or AB_SNG, a number
> 126 for an element size specified as word or a number
> 124 for an element size specified as double word.

Remedy: Check the value specified for the "adr™”
parameter in the function call to the PC
application software.

An attempt was made to access the P-periphery with a
number > 255 for an element size specified as byte, a
number > 254 for an element size specified as word or a
number > 252 for an element size specified as double
word.

Remedy:check the value specified for the "adr™
parameter in the function call to the PC
application software.

(* invalid element size *)
An attempt was made to access timers or counters with
element type Z SNG or T_SNG using a single element

request and the parameter for the element size not set for
word access (WORD_ELM).

Remedy: modify the "si ze" parameter in the function call
to the PC application software.

An attempt was made to access a flag or an absolute
address using element type MB_SNG or ABS SNG with a
single element request and the parameter for the element
sizeRBYTE_ELM.

Remedy: modify the "si ze" parameter in the function call
to the PC application software.

An attempt was made to access the inputs or the outputsin
the process image using element type EB _SNG or
AB_SNG with a single element request and the parameter
for the element size SEMA_ELM or RBYTE_ELM.

Remedy: modify the "t ype" parameter in the function call
to the PC application software.

Rev. 00/33

VIPA 2-33

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

An attempt was made to access the P periphery using
element type PB_SNG and the parameter for element size
settoBIT_ELM, SEMA_ELM or RBYTE_ELM.

Remedy: modify the "t ype" parameter in the function call
to the PC application software.

An attempt was made to read from absol ute addresses with
a single element request and element type set to
ABS_SNG aswell as an the element size of SEMA_ELM.
This type of access with absolute addressing is only
permitted for write operations! Where single bits must be
read the element size should be BIT_ELM.

Remedy: modify the "t ype" parameter in the function call
to the PC application software.

(* Bit number too high *)

An attempt was made to access a flag or an absolute
address bit with a single element request and an element
type of MB_SNG or ABS SNG as well as the element
sizeBIT_ELM or SEMA_ELM and abit number > 7 (15).

Remedy: modify the "bi t " parameter in the function call
to the PC application software.

An attempt was made to access an 1/O bit with a single
element request and element type EB_SNG or AB_SNG
aswell as abit number > 7.

Remedy: modify the "bi t " parameter in the function call
to the PC application software.

(* invalid start address *)

An attempt was made at a block transfer by means of
modules with a block element request and an element type
"Baustein”_BLK, where the relative start address in the
block is> 32767.

Remedy: modify the "adr " parameter in the function call
to the PC application software.

(* illegal block length *)

An attempt was made at a block transfer with a length

> 504 words and a block element request to any element

type.

Remedy: modify the "l en" parameter in the function call
to the PC application software.

ERR S5 BI T = $05;
ERR S5_STRT = $06;
ERR S5 LEN = $07;
2-34

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

ERR_S5_ADR

ERR_S5_QvZ

ERR S5 944

= $08;

= $09;

= $0A;

(* addresstoo large *)

An attempt was made to access an address > FFFFh in a
PLC of the 115U-series with a single or a block element
request and element type ABS SNG. These CPUs
(through CPU 944) only have an addressing capacity of
64 KB.

Remedy: modify the "adr " parameter in the function call
to the PC application software.

(* QVZ/ADF in the PLC during read/write *)

An attempt was made to access an addressing area that
does not exist.
This error message is provided by the PLCs of the 135 and
the 155-series. A 115-series PLC would be placed into the
stop condition.

Remedy: modify the "t ype" or. "adr " parameter in the
function call to the PC application software.

(* CPU 944: module in prog.bank *)

An attempt was made to access a module that is not
located in the DB bank using a block element request and
an element type of "Baustein”_BLK.

(only relevant for the CPU 944 of the PLC-type 115U)

Remedy:install the PLC's module in the DB-bank
(by means of BIB-No. 19285) or modify the
function call to the PC application software.

Rev. 00/33

VIPA 2-35

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4 Turbo-C Interface (2.0 and C++ from 1.0), Microsoft-C 6.0

C-language access to the COM driver is available by means of a library file that provides al the
functions of the INT service interrupt. A C-function has been defined for every function of the
driver. This C-function supplies parameters to registers, executes the cal to the interrupt, and
returns the necessary values. Thus, even those users that do not have the ability to write low-level
programs for the CP may use all the facilities of provided by the driver.

The include file "CP486DEF.H" contains the definition of the data types and constants for element
size, element types and error numbers. It also contains the ANSI-C prototypes for the following
functions. The include file must appear in the application program.

All the required functions have been implemented in the file CP486LIB.C. When these are to be
used in a program the file CP486LIB.OBJ must also be linked to the program. Depending on the
programming environment and version this file must be entered into the project file (Turbo-C), the
dependency list (Microsoft-C) or into the Make-file. The relevant details are available from the
applicable manuals.

Note
In "CP486LIB.H" byte was defined as unsigned char and word as unsigned short.

2.3.4.1 CP-status request function
Data structures
int CP_info (p)

typedef struct

{
word CP_id; /* Identifier: CP486 value = $C386 */
byte VGA ver, BIOS ver; [* *]
byte DRV _ver; [* */
byte CPU_AG [* *
byte CP_reg, S5 reg; [* */
} CP486_I nf 0Bl k; [* *

Data structure for the general status-info function, where the components are completed according
to the values of the CP486.

This function calls the driver function "general status information”. The function is preceded by an
installation check for the driver. If the driver was not installed the function returns -1. If the driver
was installed the function returns 0. The CP_id component always contains the identifier $C386, the
other components are not affected.

2-36 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.4.2 Reading a single element from the PLC

int CP_read AG (byte size, byte type, byte bst, unsigned | ong adr,

byte bit);
Parameters
si ze Element size (see chapter 2.3.4.11.1)
type Element type single elements (see chapter 2.3.4.11.2)
bst M odule number
adr Address in the module or absolute address
bi t Bit number
Returns

Request number or negative number for errors.

This function calls the driver function "Read a single element from the PLC". The function
enters the parameters supplied into the registers. The parameters are described in chapter
2.34.11.

If the driver detects an error, the respective error message (negative number) is returned as
function value. If the function is processed without errors, the request returns the request
number as function value.

Calling procedure

The following scheme should always be used to ensure that the driver function is processed
properly, otherwise the page frame might be locked (see chapter 2.3.4.11):

int a_no; /* Request number for the read request */
int stat; /* current request status */

int tine_count=4000;/* Tineout tinmer (= 4 seconds) */

byte wert ; /* value read fromthe PLC */

/* Start the request */
a_no = CP_read AGLBYTE_ELM DB _SNG, 10, 1, 0);

if(a_no < 0) /* An error has occurred */
printf("Request term nated by an error: %\ n", a_no);

el se

{ /* a_no contains the request nunber */
do
{
del ay(1); /* wait 1 nms */
stat = CP_stat_AG a_no, &wert); /* Fetch requested status/data */

/* until tinmer has expired or request was conpleted with or without error */
} while((tine_count-- > 0) && (stat == REQ WRKN));

switch(stat)

case REQ NO ERR:
printf("Data: % was read\n", wert);
br eak;
case REQ_UNDEF:
printf("Undefined request status, Data: % was read\n", wert);
br eak;
defaul t:
printf("Request conpleted with error: %\ n", stat);

Rev. 00/33 VIPA 2-37

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.3 Reading a block from the PLC

i nt CP_readn_AG (byte si ze, byt e type, byt e bst,
unsi gned | ong adr, word |en);
Parameters
si ze Datatype of the block elements (see chapter 2.3.4.11.4)
type Element type block elements (see chapter 2.3.4.11.3)
bst M odule number
adr Address in the module or absolute address
I en Length of datain words or bytes, depending on element type
Returns

Request number or negative number for errors

This function calls the driver function "Read a block from the PLC". The function enters the
parameters supplied into the registers. The parameters are described in chapter 2.3.4.11. If
the driver detects an error, the respective error message (negative number) is returned as
function value. If the function is processed without errors, the request returns the request
number as function value.

Calling procedure

The following scheme should always be used to ensure that the driver function is processed
properly, otherwise the page frame might be locked:

int a_no; /* Request nunmber for the read request */
int stat; /* current request status */

int tine_count=4000;/* Tineout timer (= 4 seconds) */

int buff[2100]; /* value read fromthe PLC */

/* Start the request */
a_no = CP_readn_AG WBLOCK, DB BLK, 5, 10, 100);

if(a_no < 0) /* An error has occurred */
printf("Request term nated by an error: %\ n", a_no);

el se
/* a_no contains the request nunber */
do
del ay(1); [* wait 1 nms */
stat = CP_stat_AGQ a_no, &buff); /* Fetch requested status/data */

/* until tinmer has expired or request was conpleted with or without error */
} while((tine_count-- > 0) && (stat == REQ WRKN));

switch(stat)

case REQ NO ERR:
printf("Data was read\n"");
br eak;
case REQ_UNDEF:
printf("Undefined request status \n");
br eak;
defaul t:
printf("Request conmpleted with error: %\ n", stat);

2-38 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.4.4 Writing a single element to the PLC

int CP.wite AG (byte size, byte type, byte bst, unsigned |ong adr,
byte bit, void far *p);

Parameter
si ze Element size (see chapter 2.3.4.11.1)
type Element type single elements (see chapter 2.3.4.11.2)
bst Module number
adr Address in the module or absolute address
bi t Bit number
p Pointer to write datain PCs memory
if element sizeisbit or byte pointer to abyte
if element sizeisword pointer to aword
If element sizeis double word pointer to a double word
Returns

Request number or negative number for errors.

This function calls the driver function "Write a single element to the PLC". The function
enters the parameters supplied into the registers. The parameters are described in chapter
2.3.4.11. If the driver detects an error, the respective error message (negative number) is
returned as function value. If the function is processed without errors, the request returns the
request number as function value.

Calling procedure

The following scheme should always be used to ensure that the driver function is processed
properly, otherwise the page frame might be locked (see chapter 2.3.4.11):

int a_no; /* Request number for the read request */
int stat; /* current request status */

int tinme_count=4000; [* Time-out timer (= 4 seconds) */

byte wert = Ox5A; /* value read fromthe PLC */

/* Start the request */
ano = CPwite AGLBYTE_ ELM DB_SNG 10, 1, 0, &wert);

if(a_no < 0) /* An error has occurred */
printf("Request term nated by an error: %\ n", a_no);
el se
{ /* a_no contains the request nunber */
do
del ay(1); /* wait 1 ns */
stat = CP_stat_AG a_no, NULL); /* Read the requested status */

/* until tinmer has expired or request was conpleted with or without error */
} while((tine_count-- > 0) && (stat == REQ WRKN));
switch(stat)

{
case REQ NO ERR:
printf("Data: % witten\n", wert);
br eak;
case REQ_UNDEF:
printf("Undefined request status \n");
br eak;
defaul t:
printf("Request conpleted with error: %\ n", stat);

Rev. 00/33 VIPA 2-39

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.5 Writing a block to the PLC

int CP.witen_ AG (byte size, byte type, byte bst, unsigned | ong adr,

word | en, void far *p);

Parameters
si ze Datatype of the block elements (see chapter 2.3.4.11.4)
type Element type block elements (see 2.3.4.11.3)
bst M odule number
adr Address in the module or absolute address
I en Length of datain words or bytes, depending on element type
p Pointer to write data block in PC memory

Returns

Request number or negative number for errors.
This function calls the driver function "Write a block to the PLC". The function enters the
parameters supplied into the registers. The parameters are described in chapter 2.3.4.11.

If the driver detects an error, the respective error message (negative number) is returned as
function value. If the function is processed without errors, the request returns the request
number as function value.

Calling procedure

The following scheme should always be used to ensure that the driver function is processed
properly, otherwise the page frame might be locked:

int a_no; /* Request numnber for the read request */

int stat; /* current request status */

int i;

int tinme_count=4000; /[* Timeout timer (= 4 seconds) */

int buff[2100]; /* wite data */

for(i = 0; i< 100; i++)

buff[i] = (byte)i; /* assign default values to data buffer */

/* Start the request */
a_no = CP_witen_ AG B BLOCK, DB BLK, 5, 10, 100, &buff);

if(a_no < 0) /* An error has occurred */
printf("Request term nated by an error: %\ n", a_no);
el se
{ /* a_no contains the request nunber */
do
del ay(1); /* wait 1 ns */
stat = CP_stat_AG a_no, NULL); /* Read the requested status */

/* until tinmer has expired or request was conpleted with or without error */
} while((tine_count-- > 0) && (stat == REQ WRKN));

switch(stat) {
case REQ NO ERR:
printf("Data was witten\n");
br eak;
case REQ_UNDEF:
printf("Undefined request status \n");
br eak;
defaul t:
printf("Request conpleted with error: %\ n", stat);

2-40

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.4.6 Interrogate the status of a request

int CP_stat_AG (int r, void far *p);

Parameters
a_no Request number of the request that must be interrogated
p Pointer to data or data block in PCs memory
only for read requests with single or block elements
if element sizeisbit or byte pointer to abyte
if element sizeisword pointer to aword
if element size is double word pointer to a double word
if element sizeisblock pointer to buffer for data block
Returns

Request number or negative number for errors.

This function calls the driver function "Interrogate status for a request”. The function enters
the parameters supplied into the registers. The parameters are described in chapter 2.3.4.11.
If the driver detects an error, the respective error message (negative number) is returned as
function value. If the function is processed without errors, the request returns the request
status (see chapter 2.3.4.11.5).

Rev. 00/33 VIPA 2-41

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.7 Terminate all requests for a page frame
int CP_cncl _AG (int a_no);

Parameters

Identifier for page frame 2
$28 terminate all active requests of page frame 2

This function calls the driver function "Terminate all requests for a page frame". The
function enters the parameters supplied into the registers. The parameters are described in
chapter 2.3.4.11 If the driver detects an error, the respective error message (negative number)
isreturned as function value. If the function is processed without errors, i.e. al requests were
terminates successfully, then the request returns 0.

2.3.4.8 Read process image status
byte CP_stat PA ();

Returns
Process image counter

This function calls the driver function "Status request process image". The function returns
the process image counter.

2.3.4.9 Read process image area

int CP_read PA (byte type, word adr, word len, void far *p);

Parameters
type Element type single elements (see chapter 2.3.4.11.2)
bst M odule number
adr Address in the module or absolute address
I en Datalength (bytes or words) depending on type
p Pointer to data buffer in CP memory
Returns

Process image counter.

This function calls the driver function "Read an area of the process image". The function
enters the parameters supplied into the registers. The parameters are described in chapter
2.3.4.11. If an error occurs when the function is being executed, the respective error message
(negative number) is returned as function value. If the function is processed without errors,
then the request returns the up to date value of the process image counter.

2-42 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.3.4.10 Standard function

unsi gned far pascal CP_Call (CP486_PARAMETER far *cp);
typedef struct
{

unsi gned char El enenttyp; /1l Elenent type see chapter 2.3.4.11.2 or
2.3.4.11. 3.
unsi gned char Auftrag; /1l Type of request see chapter 2.3.4.11.7

unsi gned char Baustei nnummer; // Nunmber of the data nodule or 0O for flags,
out puts etc.

unsi gned char Kennung; /1l Elenent size or data type see chapter
2.3.4.11.1 or 2.3.4.11.4.

unsi gned short Adresse; /] Start address in the el enent

unsi gned short Len; /1 Number of elenents transferred

unsi gned char far *ptr; /1 16:16 Pointer to data, DCS. Set ptr to 0 when

/1 using data in the structure.
unsi gned char far *ptr_w n; /1 16:16 Pointer to data, Wndows. Set to O
/1 when using 32bit flat nodel 32bit data.
unsi gned short (far pascal *ConfirnfFunction)(unsigned char Auftragsnumer);
/'l Reverse call function when request conpletes.

unsi gned char Cpu; /1 CPU Nunber in PLC 0 - 3, always 0 for CPU
unsi gned char reserved; /'l Reserved

unsi gned short Fehler; /1 Error code. 0 = no error

unsi gned char Daten[1]; /'l Space required for data. used when

/1 ptr==0 and ptr_w n==0.
} CP486_PARAMETER,;

The above is the data structure for standard functions. The components are pre-set in accordance
with the requirements of function that must be executed.

If available, the pointer ptr_win must, be a segment 'offset pointer'.
For stat_AG The element Len returns the length of the data area (call).
Once stat_ AG completes without errors, the element Len contains the number of bytes read.

This function can be used in place of al previously described functions.

All write data for the functions write_AG or. writen_AG is entered into the respective ARRAY and
the function CP_Call is executed.

The functions read AG or. readn_AG return all data after the function CP_CALL has been
completed (as function CP_stat_ AG) in the respective ARRAY .

Rev. 00/33 VIPA 2-43

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.11 Constants

The following constants are have been predefined. It is recommended that these are used, as they are
more readable and result in a clearer program. The resulting program can then easily be adapted to
cater for changesin the COM driver.

2.3.4.11.1 Constants for element size

#define Bl T_ELM 0x00 /* Bit */
#defi ne SEMA_ELM 0x01 /* Bit as semaphore */
#defi ne BYTE_ELM 0x02 /* Byte */
#define LBYTE_ELM 0x02 /* Left byte of a word */
#define RBYTE_ ELM 0x03 /* Right byte of a word */
#defi ne WORD_ELM 0x04 /* Word */
#define DWORD ELM 0x05 /* Doubl e word */
#define BLOCK ELM 0x07 / * Bl ock */

2.3.4.11.2 Constants for element types of single elements

#define DB_BLK 0x00 /* DB */
#defi ne DX BLK 0x01 /* DB in external nenory */
#defi ne BA BLK 0x02 /* BA */
#defi ne BB_BLK 0x03 /* BB */
#define BS_BLK 0x04 /* BS */
#define BT_BLK 0x05 /* BT */
#define Z BLK 0x06 /* Counter */
#define T_BLK 0x07 [* Timer */
#define MB_BLK 0x08 /* Fl ag */
#define EB _BLK 0x09 /* I nput area */
#define AB_BLK Ox0A /* Qut put area */
#define PY_BLK 0x0B [* P-periphery */
#define QY _BLK 0x0C /* Q periphery */
#defi ne ABS BLK OxOF /* Absol ute nmenory */
#define FB BLK 0x10 /* FB */
#define FX BLK 0x11 /* FB in external nenory */
#define OB_BLK 0x12 /* OB */
#define PB_BLK 0x13 /* PB */
#define SB_BLK 0x14 /* SB */
#defi ne RB_FREE Ox0E /* Code for request block free*/

2-44 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

2.3.4.11.3 Constants for the element types of block elements

#defi ne DB_SNG DB _BLK /* DB */
#defi ne DX _SNG DX BLK /* DB in external nmenory */
#defi ne BA _SNG BA BLK /* BA */
#def i ne BB_SNG BB_BLK /* BB */
#def i ne BS_SNG BS BLK /* BS */
#defi ne BT_SNG BT_BLK /* BT */
#define Z_SNG Z_BLK /* Counter */
#define T_SNG T BLK [* Timer */
#defi ne MB_SNG MB_BLK /* Fl ag */
#defi ne EB_SNG EB BLK /* I nput area */
#defi ne AB_SNG AB_BLK /* Qut put area */
#defi ne PY_SNG PY_BLK [* P-periphery */
#defi ne QY_SNG QY _BLK /* Q periphery */
#defi ne ABS_SNG ABS BLK /* Absol ute menory */
#defi ne FB_SNG FB_BLK /* FB */
#define FX_SNG FX_BLK /* FB in external nmenory */
#defi ne OB_SNG OB _BLK /* OB */
#defi ne PB_SNG PB_BLK /* PB */
#def i ne SB_SNG SB_BLK /* SB */
2.3.4.11.4 Constants for the data type of block elements
#define B BLOCK 0x07 /* Type: Block of bytes */
#defi ne W BLOCK 0x17 /* Type: Bl ock of words */
#define D BLOCK 0x27 /* Type: Block of |long words */
2.3.4.11.5 Identifier for request status
#defi ne REQ WRKN 0x01 /* Request being processed */
#define REQ UNDEF 0x02 /* Undefined request status */
#define REQ NO ERR 0x03 /* Request conpl. without err */
2.3.4.11.6 Constants for element types of process images
#define Z _PA 0x06 /* Counter */
#define T_PA 0x07 /* Timer */
#define MB_PA 0x08 /* Fl ag */
#define EB_PA 0x09 /* lnput area */
#define AB_PA Ox0A /* Qutput area */
#define ABS_PA OxOF /| * absolute block in PA */
2.3.4.11.7 Request type for CP__ Call
#define GET_I NFO = 0x00
#defi ne STATR_AG = 0x20
#defi ne READ _AG = 0x21
#define WRI TE_AG = 0x21
#defi ne CNCLR_AG = 0x28
#defi ne STAT_PA = 0x70
#defi ne READ PA = 0x71
#defi ne HANDLE Struct = Ox7F [* dx:bx = pointer to CP486
Par anet er _Rec */
Rev. 00/33 VIPA 2-45

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.11.8 Constants for error messages: page frame 2, 3 and 7

#define ERR S5 TYP = 0xO01;

#defi ne ERR_S5 BST

#define ERR_S5_ELM

0x02;

0x03;

[* invalid element type */

An attempt was made to access the data of a PLC of the
115U series during a single element request with element
types DX_SNG, BA_SNG, BB _SNG, BT_SNG or
QB_SNG or for a block element request with element
types DX_BLK, BA_BLK, BB_BLK, BT_BLK or
FX_BLK. These element types do nor exist in this type of
PLC.

Remedy: modify the "t ype" parameter in the function call
to the PC application software.

/* Module does not exist */

An attempt was made to access a module that does not
exist whilst using a single element request with element
type DB_SNG or. ablock element type DB_BLK.

Remedy: define a data module in the PLC or modify the
"bst " parameter in the function call to the PC-
application software.

/* Element does not exist */

An attempt was made to access non-existing datain a DB
for a single element request using element type DB_SNG
or block element request with element type DB_BLK.

Remedy: increase the length of the data module in the PLC
or modify the parameters "adr " or "l en" in the
function call to the PC application software.

An attempt was made to access timer or counter numbers
> 127 using element types Z_SNG or T_SNG with asingle
element request.

Remedy: modify the "addr " parameter in the function call
to the PC application program

An attempt was made to access a flag with a number > 199
for an element size specified as byte and an element type
MB_SNG, anumber > 198 for an element size specified as
word or a number > 196 for an element size specified as
double word.

Remedy: check the value specified for the "adr " parameter
in the function cal to the PC application
software.

2-46

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

#defi ne ERR_S5 SI ZE = 0x04;

An attempt was made to access the process image of the
I/0 areawith anumber > 127 for an element size specified
as byte and an element type EB_ - or AB_SNG, a humber
> 126 for an element size specified as word or a number
> 124 for an element size specified as double word.

Remedy: Check the value specified for the "adr" parameter
in the function call to the PC application
software.

An attempt was made to access the P-periphery with a

number > 255 for an element size specified as byte, a

number > 254 for an element size specified as word or a

number > 252 for an element size specified as double

word.

Remedy: check the value specified for the "adr " parameter
in the function cal to the PC application
software.

* invalid element size */
An attempt was made to access timers or counters with
element type Z SNG or T_SNG using a single element

request and the parameter for the element size not set for
word access (WORD_ELM).

Remedy: modify the "si ze" parameter in the function call
to the PC application software.

An attempt was made to access a flag or an absolute
address using element type MB_SNG or ABS SNG with a
single element request and the parameter for the element
sizeRBYTE _ELM.

Remedy: modify the "si ze" parameter in the function call
to the PC application software.

An attempt was made to access the inputs or the outputsin
the process image using element type EB _SNG or
AB_SNG with a single element request and the parameter
for the element size SEMA_ELM or RBYTE_ELM.

Remedy: modify the "type" parameter in the function call
to the PC application software.

An attempt was made to access the P periphery using
element type PB_SNG and the parameter for element size
settoBIT_ELM, SEMA_ELM or RBYTE_ELM.

Remedy: modify the "type" parameter in the function call
to the PC application software.

Rev. 00/33

VIPA 247

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

#define ERR S5 BI T = 0x05;

#define ERR_S5_STRT = 0x06;

#define ERR S5 _LEN

0x07;

#define ERR_S5_ADR = 0xO08;

An attempt was made to read from absol ute addresses with
a single element request and element type set to
ABS SNG as well as an the element size of SEMA_ELM.
This type of access with absolute addressing is only
permitted for write operations! Where single bits must be
read the element size should be BIT_ELM.

Remedy: modify the "type" parameter in the function call
to the PC application software.

/* Bit number too high */

An attempt was made to access a flag or an absolute
address bit with a single element request and an element
type of MB_SNG or ABS SNG as well as the element
sizeBIT_ELM or SEMA_ELM and abit number > 7 (15).

Remedy: modify the "bit" parameter in the function call to
the PC application software.

An attempt was made to access an 1/O bit with a single
element request and element type EB_SNG or AB_SNG
aswell asabit number > 7.

Remedy: modify the "bit" parameter in the function call to
the PC application software.

/* invalid start address */

An attempt was made at a block transfer by means of
modules with a block element request and an element type
"Baustein”_BLK, where the relative start address in the
block is> 32767.

Remedy: modify the "adr" parameter in the function call to
the PC application software.

/* invalid block length */

An attempt was made at a block transfer with a length

> 504 words and a block element request to any element

type.

Remedy: modify the "len" parameter in the function call to
the PC application software.

[* addresstoo large */

An attempt was made to access an address > FFFFh in a
115U series PLC with a single or a block element request
and element type ABS_SNG. These CPUs (through CPU
944) only have an addressing capacity of 64 KB.

Remedy: modify the "adr " parameter in the function call
to the PC application software.

2-48

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486COM

#define ERR S5 _QvZ = 0x09;

#define ERR S5 944 = OxO0A,

/* QVZ/ADF in the PLC during read/write */

An attempt was made to access an addressing area that
does not exist.
This error message is provided by the PLCs of the 135 and
the 155-series. A 115-series PLC would be placed into the
stop condition.

Remedy: modify the "t ype" or. "adr " parameter in the
function call to the PC application software

[* CPU 944: module in prog.bank */

An attempt was made to access a module that is not

located in the DB bank using a block element request and

an element type of "Baustein”_BLK.

(only relevant for the CPU 944 of the PLC-type 115U)

Remedy:install the PLC's module in the DB-bank
(by means of BIB-No. 19285) or modify the
function call to the PC application software.

Rev. 00/33

VIPA 2-49

CP486-Requests for PLC (Page Frame 2 and 7 Functions) Manual Toolbox

2.3.4.12 Storage of process image in page frame 7

The user may also access the process image directly. The following overview shows a map of page
frame 7. This provides very quick accessto the data:

Address in
page frame (hex)

Byt e

Byt e
Byt e

Byt e
Byt e

Byt e
Byt e

Byt e
Byt e

Byt e
Byt e
Byt e

Note

0 Process imge EB 0O
128 Byte PAE 0-127

12.7 Process i mage EB 127
128 Process image AB 0

128 Byte PAA 0-127

255 Process i mage AB 127
256 Flag byte O

256 Byte flag 0-255

TTTTTTAHA 4+TTTTTT A4+ +TTTTT T+

511 Flag byte 255 +

512/513 Timer O (‘hi gh/1 ow) +
I
| 128 Words tiner 0-127
I

766/ 767 Timer 127 (high/ | ow) L

768/ 769 Counter O (high/low +
I
i 127 Words counter 0-126
I

1020/ 1021 Counter 126 (high/Iow) Y

1022 Counter byte 1) + Count byte

1023 Interrupt the CP

All values pertaining to this page frame are refreshed when the handler module FBL/FB10 is
cdled (provided that this operation was enabled in the formal operator of the handler
module). The counter byte is incremented by the handler module every time the data is
refreshed. This counter byte can be used by the PC to detect whether the data is valid and
how often it was refreshed since the last read operation. Data is valid if the counter byte
contains a number between 1...255. The counter is restarted from 1 when it exceeds the
upper limit.

The handler module "Synchron” resets the running counter at address 3Feh of page frame 7.
Thisindicates to the PC that the datain page frame 7 is currently not valid.

The PC must not delete this page frame if the counter Dbyte
(at address 3FEh of the page frame) contains a 0.

The handler modul e accesses this page frame for write operations only.

The handler module does not issue an interrupt when the data of page frame 7 must be
refreshed.

2-50

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486COM

2.4 Operation of the CP486COM in a WINDOWS environment
As of version 2.2 of the tool diskette a programming library containing the following files is
available for MS-WINDOWS 3.1:

* Theheader file CP486WIN.H and the OBJfile CP486WIN.OBJ.

» Thefile CP486WIN.H contains the definitions required for the WINDOWS environment.

* The file CP486WIN.OBJ contains the communication functions for WINDOWS. These
functions are accessed as described for DOS in chapter 2.3.4. (Exception: CP_stat AG)

Changesto thecalling structure of the function
CP _stat AG: CP_stat AG (byter) wherer = request number.

New functions

CP_init (void): defines a data area for communications via page frame 4 and returns a
pointer to this area.

CP_exit (void): releases the data area. This command is obligatory at the end of the
program.

Note

In addition to the entry in the CONFIG.SY Sfile, the page frame area must be excluded from
WINDOWS memory management by means of an EMMExclude = ...entry into the [386Enh]
section of the SY STEM.INI file.!

This is always necessary when the CP486 is installed in a WINDOWS 3.1 environment as
WINDOWS does not automatically exclude the page frame area.

Thetool diskette 2.2 contains a sample for the operation in a WINDOWS environment.

Rev. 00/33 VIPA 2-51

Operation of the CP486COM in aWINDOWS environment Manual Toolbox

2-52 VIPA Rev. 00/33

3 Linkage with PLC by CP486NT

3.1 General description

3.2 Installation of the page frame software
3.2.1 PLC-side: handler modules
3.2.2 Various representations of data in memory
3.3 Operation of the CP486COM in a Windows-NT environment
3.3.1 Installing the page frame driver into Windows-NT
3.3.2 Microsoft-Visual C V2.0, V4.0 interface
3.3.3 Description of the structures
3.3.4 General definitions and definitions of errors

3.3.5 Sample program

3-1
3-2
3-2

3-4

3-6
3-7
3-19
3-21

3-27

Manual Toolbox Linkage with PLC by CP486NT

3 Linkage with PLC by CP486NT

3.1 General description

The data transfer between the CP486 and the PLC is controlled by means of handler modules on the
PLC side and by means of software-interrupts on the CP-side. The following routines are available:

Operation onthe PLC-side Operation on the CP-side

Page CP-request: read/write data handler module is invoked | Software interrupt for DOS
frame2 |from/to PLC (CP486 active) |cyclically (FB1) call to driver for WinNT
Page Transfer processimageto CP | handler module is invoked | Software interrupt or direct
frame 7 cyclicaly (FB1) access to the page frame

Tab. 3-1: Routines

Thefollowing data structuresin the PLC may be accessed from the CP:

» single elements of the type bit, byte, word and double word, DB, DX, BA, BB, BT, BS,
flags, inputs, outputs, timers, counters

» Datablocks DB, DX, MB, T, Z, BA, BB, BT, BS, FB, FX, OB, PB, SB

The following functions are available from version 3.00 of the CPX86
(software CP4-SW593 version 3.00) and version 3.00 of the handler module
(CP4-SW973 version 3.00).

The following description refers to the CPX86 program as COM-driver.

Rev. 00/33 VIPA 31

Installation of the page frame software Manual Toolbox

3.2 Installation of the page frame software

3.2.1 PLC-side: handler modules

The handler modules FB1 and FB2 must be loaded into the PLC to facilitate communications with
the CP486. Handler module FB1 is started in OB1, and FB2 in the restart modules (OB20, OB21
and OB22).

Examplefor thecall to FB1in the OB1

Baust ei n#0B1
BI B

0000 :SPA FB 1
NAME #CP-L/ S
ANSS =KY 2, 32

PAA =KF +0
PAFE =MB 99
0005 . BE

Name |Format |Description

ANNS | KY Nunber of requests
PAA KF Process inage identifier
PAFE |MB Fl ag byte for error nessages

Tab. 3-2; Parameter list for starting FB1

ANSS AN The maximum number of requests that should be processed in the page
frame when the handler module is started

SS The number of the base page frame

PAA Update the identifier of the processimages in the page frame when the handler
module is being started

=0 processimages must not be updated
#0 processimageswill be updated

The value that is specified hereistransferred to the process image
and consists of the page frame number + 1. Valid page frame
numbers range from 4 - 7.

PAFE Error messages from the handler module
=0 noerror occurred
#0 an error occurred. The error number is supplied in the PAFE-
byte
1 The maximum number of requests that should be processed
when a handler module is started is 0.

2 The maximum no. of requests that should be processed
when a handler module is started is larger than 127.

3 The base page frame number is not divisible by 8
5 The page frame has not been synchronized by the CP.
9 Page frame for process image not located in avalid area.

Scratch padsused: MB200-MB255

32 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486NT

Examplefor calling FB2 from OB21.:

Baust ei n#0B21

:SPA FB 2
#SYNCHRON
=KF +32
=KF +0
=KF +7
=MB 98

; BE

Format | Description

KFE Nunber of the base page frane
KF Type of synchronization
KF Process image identifier
BY Flag byte for error nessages

BI B
0000
NAVE
SSNR
WART
PAA
PAFE
0005
Name
SSNR
WART
PAA
PAFE
SSNR
WART
PAA
PAFE
Scratch pads used:

Tab. 3-3; Parameter list for starting FB2

Base page frame number

=0 FB-SYNCHRON does not wait until the CP has synchronized every
individual page frame

#0 FB-SYNCHRON waits until the CP has synchronized every
individual page frame

Number of page frame where process image must be stored.
Valid rangeis between 4..7.

Error message from the handler module
=0 noerror occurred
#0 anerror was detected:
3 number of base page frame is not divisible by 8.

MB200-MB255

Rev. 00/33

VIPA 3-3

Installation of the page frame software

Manual Toolbox

3.2.2 Various representations of data in memory

The different rules for representing words and double words (long words) in the CP and in the PLC
must be met when datais transferred between the CP and the PLC.

Data words are stored differently in the CP than in the PLC. The positions of the most significant
byte (high-byte) and the least significant byte (low-byte) have been swapped. In the case of double
words, the sequence of all 4 bytes has been reversed. Where data is transferred between the PLC and
the CP, the position of relevant bytes must be swapped at some time, as the transferred data would
otherwise be invalid. Wherever possible, the COM driver will adjust the data automaticaly as

required.

The driver will perform an automatic swap for al data transfers to/from page frame 2 and 7.

» Bytes are not modified during transfer.

» The most significant and least significant bytes of words are swapped during transfer.
» The sequence of all 4 bytes of along dataword is reversed during transfer.

Representation of datain thePLC

Addressn

Addressn
Addressn+1

Addressn
Addressn+1
Address n+2

Address n+3

byte

high-byte

low-byte

high-byte high-word

low-byte high-word

high-byte low-word

low-byte low-word

Representation of datain the CP

Addressn

Addressn
Addressn+1

Addressn
Addressn+1
Address n+2

Address n+3

byte

low-byte

high-byte

low-byte low-word

high-byte low-word

low-byte high-word

high-byte high-word

representation byte

representation word

representation double
word

representation byte

representation word

representation double
word

34

VIPA

Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486NT

3.3 Operation of the CP486COM in a Windows-NT environment

As of version 2.2 of the tool diskette a programming library containing the following files is
available for WINDOWS-NT 3.51:

Include-Files
CP486DEF.H
CPHWDEF.H
DRVFCALL.H
WMKTY PES.H

C-Files
CPTEST.C

Library files
CPWK.LIB
CPWKNT.DLL

Page framedriver
CPWK.SYS

Operating system
CPWK.INI
REGINI.EXE

General definitions and prototypes

Definitions for CP-modules

Definition of the driver calls for DevlOCitrl

Definition of the type of calls for different compilers and operating systems

Demo program for reading and writing from/to the page frame

Import library with the exporting functions of the DLLs
dynamic library filesfor NT

Page frame driver for Windows-NT 3.51

Script file for regini.exe

makes entries into the registration script of the NT system and must be
used in conjunction with "CPWK.INI"

Rev. 00/33

VIPA 35

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

3.3.1 Installing the page frame driver into Windows-NT

Before the page frame driver isinstalled Windows-NT 3.51 must be installed on the VIPA 486-DX.

The following steps are necessary to register and activate the page frame driver under
Windows-NT 3.51:

Copy thefile "CPWK.SY S' into the directory:

\ W NNT35\ SYSTEMB2\ DRI VERS

Copy the files"REGINI.EXE" and "CPWK.INI" into adirectory you have created.

You must register the driver with your NT-system by means of the program REGINI.
Choose "Run" from your START menu and execute the file "REGINI.EXE" with the
script-file "CPWK.INI" as command line parameter. REGINI installs the driver into your
system.

Restart your system to initialize the driver.

Start the page frame driver by selecting the Main group, Control panel, Hardware and
search the displayed list of hardware units for the entry:

"VIPA Dual Port S5 Device Driver".

Enter the required "starting-mode" for the page frame driver and start the driver. The
"Status' column of the hardware panel now displays "started".

At this point the page frame driver is ready for operation and may be accessed from the applications
by means of the function calls described below.

You may use the console application "CPTEST.EXE" to verify that the driver operates properly .
Start the application via the Main group and the "MS-DOS-input request”". Please note that the
library file"CPWK.DLL" must be located in the same directory.

3-6

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.2 Microsoft-Visual C V2.0, V4.0 interface

C-language access to the COM driver is available by means of a library file that provides all the
functions. A C-function has been defined for every function of the driver.

These functions may be used by applications running on the CP486 to read data from or write data
to the PLC. Dataistransferred by means of a structure that you must complete as required.

The include-file "CP486DEF.H" defines the data type and constants for element size, element types
and error numbers. The function prototypes for the following functions are also defined here in
ANSI-C format. The application program must contain areference to the include-file.

All required functions are provided by the DLL file (CPWKNT.DLL). The DLL must be located in
the same directory as your application. During compilation you must also link the import library
"CPWK_.LIB" to your application. Depending on the programming environment and version this file
must be entered into the dependence-list (project list) or into the "make-file". Please refer to the
respective manuals for details.

All the functions below require the type definitions specified in "WMKTY PES".

#defi ne VENTRY_C pascal
#defi ne W PO NTER *

Rev. 00/33 VIPA 37

Operation of the CP486COM in aWindows-NT environment

Manua Toolbox

3.3.2.1 CP-function initialization

unsi gned short WENTRY C CP_init (void)

Input parameters
none

Returns
0 no errors
CP_NO DRI VER error, see chapter 3.34

This function must be executed before any other CP-functions are accessed. It checks
whether the Windows-NT driver has been installed and then opens and initializes the device

interface.

3.3.2.2 CP-function exit
void WENTRY_C CP_exit (void)

Input parameters
none

Returns
none

This function closes the device-interface and must be called before the program is ended.

3-8 VIPA

Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.2.3 CP-function read

unsigned short WENTRY _C CP_startread (CP386_ PARAMETER
W PO NTER cp)

Input parameters
CP386_PARAMETER W PO NTER cp pointer to astructure containing the entries

about the read data for the PLC.
Returns

0 no error

<>0 system error

cp - Fehler error, see chapter 3.3.4

This function starts a read operation. The respective variables of the structure for the read
operation must be assigned as required before the function is executed (see chapter 3.3.3).

Structurevariables

Input

Element type cp - Elenenttyp single or block elements

M odule number cp - Baustei nnunmmer only for module elements

Datatype cp - Kennung Datatype for single or block-
elements

Length cp - Len Number of elements that must

be read or the bit number for

reading single bit elements

Result

Request number cp - Handle Unique request number

Status cp - Fehler Status of the connection

This function may be used to read a single element or a block element. The function initiates
the request and immediately returns to the caller. Any data can only be retrieved by means of
acall to the status function "CP_pollread".

Note
Read requests that have been completed are blocked to ensure that it is not overwritten by a
new request before the returned data has been retrieved. Once a request has been started, its
status must be interrogated until the request returns "completed with error" or "completed
without error”.

The status request returns the data at the end of the structure starting from "cp — Daten[0]".
. If the status is not interrogated, the request remains locked and no further read requests can
be started, even if all requests for the page frame have been compl eted.

Rev. 00/33 VIPA 39

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

3.3.2.4 CP-function read complete check
unsi gned short VWENTRY_C CP_pol Il read (CP386_PARAMETER W PO NTER cp)

Input parameters

CP386_PARAMETER W PO NTER cp pointer to the structure containing the entries
required for the data read from the PLC.

Returns
0 no error
<>0 System error
cp - Fehler Error, see chapter 3.3.4

Y ou can use this function to check whether the data requested by aread request is available.
A "CP_startread" must always precede this function.

The function modifies a few variables in the respective structure and returns the requested
data.

Structurevariables
Status cp - Fehler connection status
Daten cp - Daten[O0] thisis where the requested datais returned

The function enters the data into the data buffer "cp — Daten" located at the end of the
structure "CP386_PARAMETER". You must reserve a data buffer providing enough space
for the expected data. Y ou may specify the size of the data buffer as follows:

CP_386_PARAMETER *cp;
i nt bufferSize=1024;

;:p:(CP386_PARAMETER *) mal | oc(si zeof (CP386_PARAMETER *) +
buf fer Si ze));

Note
Individual bytes of data words and data blocks are swapped during the transfer.
The sequence of the 4 bytes of double words and data blocks is reversed.

310 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.2.5 CP-function stop aread operation

unsi gned short WENTRY _C CP_stopread (CP386 PARAVETER W PO NTER cp)

Input parameters

CP386_PARAMETER W PO NTER cp pointer to astructure containing entries about
the data that must be read from the PLC.

Returns
0 no error
<>0 System error
cp - Fehler Error, see chapter 3.3.4

This function terminates an active read request.

Rev. 00/33 VIPA 311

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

3.3.2.6 CP-function write

unsigned short WENTRY C CP_startwite (CP386_ PARAMETER
W PO NTER cp)

Input parameters
CP386_PARAMETER W PO NTER cp pointer to astructure containing entries about

the write data for the PLC.
Returns
0 no error
<>0 System error
cp - Fehler Error, see chapter 3.3.4

This function starts a write request. The entries in the variables of the respective structure
must be completed before the function is called. (see chapter 3.3.3).

Structurevariables

Entry

Element type cp - Elenenttyp single or block elements

Module number cp - Baustei nnunmer only for module elements

Datatype cp - Kennung Datatypefor asingleor a
block element

Element offset cp - Adresse Offset of the element type

Length cp - Len Number of elements that must
be written or the bit number for
single bit elements

Data cp - Daten write data

Results

Request number cp - Handle Unique request number

Status cp - Fehler Connection status

This function is used to write a single data element or a data block to the memory of the
PLC. The function writes the respective vaue into the page frame and does not wait for the
PLC to fetch the data, it returns to the caller immediately. For this reason the status can only
be retrieved by means of the status function "CP_pollwrite".

Note
Once awrite request has been started, its status must be interrogated until the request returns
"completed with error" or "completed without error”. Data is aways returned from "p —
Daten[0]" at the end of the structure. If the status is not interrogated, the request remains
locked and no further requests can be started.

312 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.2.7 CP-function poll write complete

unsigned short WENTRY_C CP_pollwite (CP386_PARANMETER

W PO NTER cp)

Input parameters

CP386_PARAMETER W PO NTER cp Pointer to a structure containing the required
entries about the write datafor the PLC.

Returns
0 no error
<>0 System error
cp - Fehler Error, see chapter 3.3.4

Note

This function checks whether the data for a write request has been retrieved or not. This
function must always be preceded by a "CP_startwrite". The respective entries in the
variables of the structure must have been completed (see chapter 3.3.3). The function
supplies the write data to the Windows NT-driver and modifies the following variable in the
structure.

Status cp - Fehler connection status

The function retrieves the data from the buffer "cp — Daten" located at the end of the
structure "CP386_PARAMETER". You must reserve a data buffer providing enough space
for the expected data. The data must also be available before the call to the function
"CP_startwrite" isissued. You may specify the size of the data buffer as follows:

CP_386_PARAMETER *cp;
int bufferSize=1024;

cp=(CP386_PARAMETER *) malloc(sizeof (CP386_ PARAMETER *) + bufferSize));

The bytes of datawords and data blocks are swapped during transfer. The 4 byte sequence of
double word data and data blocks is reversed.

Rev. 00/33 VIPA 313

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

3.3.2.8 CP-function stop write operation

unsigned short WENTRY_C CP_stopwite (CP386_PARANMETER
W PO NTER cp)

Input parameters
CP386_PARAMETER W PO NTER cp Pointer to asstructure containing the write

datafor the PLC.
Returns
0 no error
<>0 System error
cp - Fehler Error, see chapter 3.3.4

This function stops any currently active write request.

314 VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486NT

3.3.2.9 CP-function general call

unsigned short VWENTRY_C CP_Call

Input parameters
CP386_PARAMETER W PO NTER cp

"CP386_PARAMETER"

Returns
0
<>0

cp - Fehler

(CP386_PARAMETER W PO NTER cp)

Pointer to the structure containing the entries
in a structure of the type

no error
System error
Error, see chapter 3.3.4

This function can be used in place of al the above function calls. You must supply the
relevant function number (see chapter 3.3.4) as arequest type before issuing the call.

Request types

The following request types are available for "cp — Auftrag”:

CP_START_READ
CP_POLL_READ
CP_START_WRI TE
CP_POLL_WRI TE
CP_GETKACHEL
CP_SETKACHEL

Start read operation

Request read status and read data
Start write operation

Request write status and write data
Read page frame information

Set base page frame number

In addition to these functions you may also use the following to read the process image:

READ PA
STAT PA

Read process image
Read the status of the process image

Rev. 00/33 VIPA 3-15

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

Note

The process image function reads an area from the current process image. The length of the
individual areas is checked when these are accessed, i.e. you can not request 4 bytes from
EB126 as only 128 EB bytes are available.

The length for timers or counters is specified in words, al others are specified in bytes. The
high and the low byte of timers and counters are also swapped during transfer to ensure that
the data words may be processed properly in the CP.

Any required area spanning arbitrary partitions of the process image may be read if the type
is specified as "ABS_SNG". The respective length is specified as bytes, even if the area
includes timers or a counters. If a timer or counter area is read, the high and low byte are
again swapped!

Element typesfor "cp — Elementtyp" and length for "cp — Len"

Z_SNG Counter (length in words)

T_SNG Timer (length in words)

MB_SNG Flags (Iength in bytes)

EB_SNG Inputs (Iength in bytes)

AB_SNG Outputs (Iength in bytes)

ABS_SNG Absolute access to process image (length in bytes)

316 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.2.10 Set CP-page frame parameter

unsigned short WENTRY_C CP_setkachel (KACHEL_STRUCT W PO NTER
kachel)

Input parameters

KACHEL _STRUCT W PO NTER kachel Pointer to a structure containing the
entries for the page frame that must be

Set.
Returns
0 no error
<>0 System error
kachel - Fehler Error, see chapter 3.3.4

The structure must be completed before the function is called (see chapter 3.3.3). The base
page frame number may be supplied in "KACHEL_STRUCT".

The base page frame number "kachel - Kachelbasis' for the CPABG6x may be set to any
value that is divisible by 8 and that lies between 0 and 240. For the CP4BG7x the base page
frame number must be divisible by 16.

Rev. 00/33 VIPA 317

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

3.3.2.11 Read CP- page frame parameters

unsigned short WENTRY_C CP_getkachel (KACHEL_STRUCT W PO NTER
kachel)

Input parameters

KACHEL _STRUCT W PO NTER kachel Pointer to a structure that is used to
store the data about the page frame.

Returns
0 no error
<>0 System error
kachel - Fehler Error, see chapter 3.3.4

Before this function is called the respective structure should be initialized to contain "0"'s.
The function returns information about the page frame (see chapter 3.3.3).

318 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.3 Description of the structures

This section contains a description of the structures that are available as a data interface when the
CP-functions are used. Type-definitions are contained in include-files CP486DEF.H and
CPHWDEF.H. Please note the rules for the definitions that you should use to supply parameters to
structures, as explained in chapter 3.3.4.

Extract from " CP486DEF.H" :

typedef struct {

unsi gned char El enenttyp; /I Accessi bl e el enent types of the PLC

unsi gned char Auftrag; /I Request type (only required for the
[/ function "CP_call".

unsi gned char Baust ei nnunmmer ; /I Nunmber of the nodule, else 0 for flags,
//outputs etc.

unsi gned char Kennung; /lspecifies the elenent width (bit, byte,
/I word, double word)

unsi gned short Adresse; //Start address in the element, for wite
/ l operations

unsi gned short Len; /I Nunber of elenments transferred or
/1bit nunber for single elenent bit

unsi gned char far *ptr; /116:16 Real node-pointer to data DOCS.

//set to NULL when using the data in the
/lstructure "ptr"

unsi gned char far *ptr_w n; /116:16 Real node pointer to data
/I Wndows. For 32 Bit Flat-Mdel set 32Bit
//data to NULL

unsi gned short far pascal *ConfirnfFunction)

(unsi gned char Auftragsnumer);
/I Recall function when request has conpl eted

unsi gned char Cpu /1 CPU Nunber in the PLC 0 - 3, always O for
/la single CPU

unsi gned char Handl e; /I Handl e for the request

unsi gned short Fehler; /Il Error code. 0 = no error, else see the
/lconstants for error nmessages page franme 2

unsi gned char Daten[1]; /| Space for data. Used when

/] ptr==NULL and ptr_w n==NULL
} CP386_PARAMETER,;

The following structure elements can not be used for Windows-NT:
s *ptr
e *ptr_wn
e *ConfirnfFunction

Use the data buffer instead of *ptr or. *ptr_win. Ensure that "cp — Daten" is allocated as required
by the read or write data (refer to the function description for "CP_pollread" and "CP_pollwrite").

Rev. 00/33 VIPA 3-19

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

Extract from " CPHWDEF.H" :

typedef struct
{

unsi gned short Cb;

unsi gned short Fehler;

unsi gned short Seriennunmer;
short Kachel basi s;

short Kachel Anzahl ;

short Trei ber Versi on;

shor t CPTyp;

short Kachel Typ;

} KACHEL_ STRUCT;

//Length of the structure, in bytes
/1 (allocated internally)

/1 Error code 0=no error

/1 Serial number of the CP

/I Definition of base page frane

/I Nunber of page franes

//Driver version 100 -> 1.00

/] CP3, CP4, BG81,

// Page frane, type

3-20

VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.4 General definitions and definitions of errors

The following constants have been defined. It is recommended that these are used, as they are more
readable and result in a clearer program. The resulting program can then easily be adapted to cater
for changes in the page frame driver.

3.3.4.1 General definitions

Function numbers
must only be used for function call "CP_Call" and entered into "cp — Auftrag"

#defi ne CP_START_READ Start a read request

#defi ne CP_POLL_READ Start a read poll request

#define CP_START _WRI TE Start a wite request

#define CP_POLL_WRI TE Start a wite poll request

#defi ne CP_CGETKACHEL Request to read page franme info
#defi ne CP_SETKACHEL Request to wite page frane info
#defi ne READ PA Read process i mage

#defi ne STAT_PA Read the status of the process inmage

Element typesfor single elements
must be entered into "cp —» Elementtyp”

#define DB_SNG 0x00 /1 DB

#define DX _SNG 0x01 / /DB in external nenory
#defi ne BA_SNG 0x02 /1 BA

#define BB_SNG 0x03 / | BB

#defi ne BS_SNG 0x04 /1 BS

#define BT_SNG 0x05 /1 BT

#define Z SNG 0x06 /' Count er

#define T_SNG 0x07 /1 Ti mer

#define MB_SNG 0x08 /'l Fl ag

#define EB_SNG 0x09 /1l nput area

#define AB_SNG Ox0A /1 Qut put area

#defi ne PY_SNG 0x0B /| P-periphery

#define QY_SNG O0x0C /1 Q periphery

#defi ne ABS_SNG OxOF / | Absol ute nenory

#defi ne FB_SNG 0x10 /1 FB

#define FX_SNG O0x11 /1 FB in external nenory
#define OB_SNG 0x12 /1 0B

#define PB_SNG 0x13 /1 PB

#defi ne SB_SNG 0x14 /1 SB

Rev. 00/33 VIPA 321

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

Element typesfor block elements
must be entered into "cp — Elementtyp"

#define DB _BLK 0x00 /1 DB

#define DX _BLK 0x01 / /DB in external nenory
#defi ne BA _BLK 0x02 /1 BA

#define BB_BLK 0x03 / | BB

#defi ne BS_BLK 0x04 /1 BS

#define BT_BLK 0x05 /1 BT

#define Z BLK 0x06 /' Count er

#define T_BLK 0x07 /1 Ti mer

#define MB_BLK 0x08 /I Fl ag

#define EB_BLK 0x09 /'l nput area

#define AB BLK Ox0A /1 Qut put area

#define PY_BLK 0x0B /| P- peri phery

#define QY_BLK 0x0C /'l Q periphery

#defi ne ABS BLK OxOF / | Absol ute nenory

#defi ne FB_BLK 0x10 /1 FB

#define FX_BLK Ox11 /1 FB in external nenory
#define OB _BLK 0x12 /1 0OB

#defi ne PB_BLK 0x13 /1 PB

#defi ne SB_BLK 0x14 /1 SB

Datatypefor single elements
must be entered into "cp - Kennung"

#define Bl T_ELM 0x00 /1Bit

#defi ne BYTE_ELM 0x02 /I Byte

#define LBYTE_ELM 0x02 /[lleft byte of a word
#defi ne RBYTE ELM 0x03 //right byte of a word
#defi ne WORD_ELM 0x04 [1 Wor d

#defi ne DWORD_ELM 0x05 / | Doubl e word

#defi ne BLOCK ELM 0x07 /1 Bl ock

Datatypefor block elements
must be entered into "cp —» Kennung"

#defi ne B BLOCK 0x07 /| Type: Bl ock of bytes
#defi ne W BLOCK 0x17 /| Type: Bl ock of words
#define D BLOCK 0x27 /| Type: Block of |ong words

Identifier for request statuses
These messages arereturned in "p — Fehler" by arequest that is interrogated using a poll-function

#defi ne REQ NO ERR 0x00 /I Request conpl. w thout error
#defi ne REQ WRKN 0x01 / | Request bei ng processed
#defi ne REQ_UNDEF 0x02 /I Undefined request status

322 VIPA Rev. 00/33

Manual Toolbox Linkage with PLC by CP486NT

3.3.4.2 Error definitions

General error definition:
"CP_init" function only when an error has occurred

#defi ne CP_NO DRI VER 1 [I NT-driver not installed

Error messagesfor pageframe?2and 7:
returned in"p - Fehler"

General

#define I LL_TYPE 100 //I1llegal elenent type

#define ERR _LEN 101 //Incorrect length

#define LL_ELMSZ 102 //I11legal elenent size

#defi ne CPU_ERR 103 //Elenment type not valid for this CPU

#define ERR_KFULL 104 //Page franme full
#defi ne ERR_COORD 105 //Page frame access not possible

#defi ne ERR _BLKD 106 //Page frame | ocked

#defi ne ERR_ REQNR 107 //lIncorrect request nunber

#defi ne ERR DPTR 108 //Invalid source-/destination data
/ | poi nter

#defi ne ERR_NOREQ 109 //Request not being processed
#define ERR ILL_CALL 110 //Illlegal function call

PL C-gpecific
These messages are returned by arequest that is interrogated by means of a poll function when an
error has occurred

#define ERR S5 _TYP OxFFO1 //illega element type

An attempt was made to access the data of a PLC of the
115U series during a single element request with element
types DX_SNG, BA_SNG, BB_SNG, BT _SNG or
QB_SNG, or for a block element request with element
types DX_BLK, BA_BLK, BB_BLK, BT BLK or
FX_BLK. These element types do not exist in this type of
PLC.

Remedy: modify the structure variable "Elementtyp" before

calling the function in the application.

#define ERR S5 _BST OxFF02 // Module doesnot exist

An attempt was made to access a module that does not
exist whilst using a single element request with element
type DB_SNG or. ablock element type DB_BLK.

Remedy: define a data module in the PLC or modify the
structure variable "Bausteinnummer" before
calling the function in the application.

Rev. 00/33 VIPA 323

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

#defi ne ERR_S5_ELM OxFFO3

#defi ne ERR_S5_SI ZE OxFF04

/! Element does not exist

An attempt was made to access non-existing datain a DB
for a single element request using element type DB_SNG
or block element request with element type DB_BLK.

Remedy: increase the length of the data module in the
PLC or modify the structure variables "Adresse"
or "Len" before calling the function in the
application software.

An attempt was made to access timer or counter numbers

> 127 using element types Z_SNG or T_SNG with asingle

element request.

Remedy: modify the parameter "Adresse" before calling
the function in the application program.

An attempt was made to access a flag with a number > 199
for an element size specified as byte and an element type
MB_SNG, anumber > 198 for an element size specified as
word or a number > 196 for an element size specified as
double word.

Remedy: check the structure variable "Adresse" before
calling the function in the application.

An attempt was made to access the process image of the
I/O areawith anumber > 127 for an element size specified
as byte and an element type EB_ - or AB_SNG, a number
> 126 for an element size specified as word or a number
> 124 for an element size specified as double word.

Remedy: check the structure variable "Adresse" before
calling the function from the application.

An attempt was made to access the P-periphery with a
number > 255 for an element size specified as byte, a
number > 254 for an element size specified as word or a
number > 252 for an element size specified as double
word.

Remedy: check the structure variable "Adresse" before
calling the function from the application.

/l'illegal element size

An attempt was made to access timers or counters with
element type Z SNG or T_SNG using a single element
request and the structure variable "Kennung" was not set
for word access (WORD_ELM).

Remedy: modify the structure variable "Kennung" before
calling the function from the application.

3-24

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486NT

#define ERR_S5_BI T OxFFO5

An attempt was made to access a flag or an absolute
address using element type MB_SNG or ABS_SNG with a
single element request and the structure variable
"Kennung" containing RBY TE_ELM.

Remedy: modify the structure variable "Kennung" before
calling the function in the application.

An attempt was made to access the inputs or outputs of the
process image using element type EB_SNG or AB_SNG
and the structure variable "Kennung" containing
SEMA_ELM or RBYTE_ELM.

Remedy: modify the structure variable "Elementtyp" before
calling the function in the application.

An attempt was made to access the P periphery using
eement type PB _SNG and the structure variable
"Kennung" set to BIT_ELM, SEMA_ELM or
RBYTE_ELM.

Remedy: modify the structure variable "Elementtyp" before
calling the function in the application.

An attempt was made to read from absol ute addresses with
a single element request and element type set to
ABS_SNG aswell as an the element size of SEMA_ELM.
This type of access with absolute addressing is only
permitted for write operations! Where single bits must be
read the element size should be BIT_ELM.

Remedy: modify the structure variable "Elementtyp" before
calling the function in the application.

/I Bit number too high

An attempt was made to access a flag or an absolute
address bit with a single element request and an element
type of MB_SNG or ABS SNG as well as the element
sizeBIT_ELM or SEMA_ELM and abit number > 7 (15).

Remedy: modify the structure variable "Len" before calling
the function in the application.

An attempt was made to access an 1/O bit with a single
element request and element type EB_SNG or AB_SNG
aswell asabit number > 7.

Remedy: modify the structure variable "Len" before calling
the function in the application.

Rev. 00/33

VIPA 3-25

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

#define ERR _S5_STRT OxFF06 //invalid start address

#defi ne ERR_S5_LEN OxFFO7

#define ERR_S5_ADR OxFFO08

#define ERR_S5_QvZ OxFF09

#defi ne ERR_S5_944 OxFFOA

#define ERR_S52SHRT OxFFOB

#define ERR_S5_BITSIZE OxFFOC

An attempt was made at a block transfer by means of
modules with a block element request and an element type
"Baustein”_BLK, where the relative start address in the
block is> 32767.

Remedy: correct the structure variable "Adresse" before
calling the function from the application.

/l'illegal block length

An attempt was made at a block transfer with a length

> 504 words and a block element request to any element

type.

Remedy: modify the structure variable "Len" before calling
the function in the application.

[/l address too large

An attempt was made to access an address > FFFFh in a
PLC of the 115U-series with a single or a block element
request and element type ABS SNG. These CPUs
(through CPU 944) only have an addressing capacity of
64 KB.

Remedy: correct the structure variable "Adresse" before
calling the function from the application.

Il QVZ/ADEF in the PLC during read/write

An attempt was made to access an addressing area that
does not exist.

This error message is provided by the PLCs of the 135 and
the 155-series. A 115-series PLC would be placed into the
stop condition.

Remedy: correct the structure variable "Elementtyp" or
"Adresse" before caling the function from the
application.

/I CPU 944: module in prog.bank
An attempt was made to access a module that is not
located in the DB bank using a block element request and
an element type of "Baustein”_BLK. (only relevant for the
CPU 944 of the PLC-type 115U)

Remedy:install the PLC's module in the DB-bank
(by means of BIB-No. 19285) or modify the
function call in the application.

/l Areatoo small

Il Length of transfer for bit elements not 1

3-26

VIPA Rev. 00/33

Manual Toolbox

Linkage with PLC by CP486NT

3.3.5 Sample program

The following example illustrates the use of these functions. Any information for the page frame
driver isread and displayed first. Then the structure elements for reading from or writing to the page
frame are initialized. The purpose is to read or write 10 words from/to the data module in DB10
starting at word 0. Thefirst data byte is modified before the data is written.

#i ncl ude <w ndows. h>
#i ncl ude <cp486def. h>
#i ncl ude <stdio. h>
#i nclude <stdlib. h>
voi d mai n(voi d)
{
unsi gned short *db;
KACHEL_STRUCT ks;
CP386_PARAMETER *cp;
if(!CP_init()) /1 initialize CP-functions
{
ks.Cb = si zeof (KACHEL_STRUCT) ;
i f(!CP_getkachel (&s)) /'l read page frane info
{
printf("Driver version %, page frane start %, nunber %l, serial nunber %l\n",
ks.driver version, ks. base page frane, ks. Nunber of page franes, ks. serial nunber);
}
el se
printf("No page frane driver");
i f(cp=(CP386_PARANMETER*) nal | oc(si zeof (CP386_PARAMETER*) +1024))
{ /1 Cp-Structure initialized
cp->El enent t yp=DB_BLK; /1 Data nodul e-data bl ock
cp- >Baust ei nnummrer =10; /1 Modul e nunber 10
cp- >Kennung=W BLOCK; /1 Word- bl ock
cp- >Adr esse=0; /1 fromoffset 0 in the DB
cp->Len=10; /1l read 10 words
cp- >Cpu=0; /1 start read request
db=(unsi gned short*)cp->Dat en;
if(!CP_startread(cp)) /] start read request -> 0 OK, != 0 Systemerror
{

printf("Read started\n");
i f(cp->Fehler==0) //cp->Fehler is initialized to O by start function

{
printf("Handl e nunber: %\ n", cp->Handl e);

whi | e(! CP_pol I read(cp)) /1 0 OK != 0 Systemerror
{
i f(cp->Fehl er==REQ NO ERR) // cp->Fehler = REQ NO ERR if data avail able
{
printf("Data read : % % %\ n",db[O], db[1],db[2]);
br eak;
}
el se

Rev. 00/33 VIPA

3-27

Operation of the CP486COM in aWindows-NT environment Manual Toolbox

{ /1 REQ WRKN, REQ UNDEF or PLC-specific error
printf("CpFehler = %\ n", cp->Fehler);
Sl eep(20); /1 wait 20 ns and try again
}
}
}
el se
printf("CpFehler = %\ n",cp->Fehler); [// general error (100-110)
}
el se

printf("No start-read\n");

(*db) ++; /] increment data[O0]
if(!CP_startwite(cp)) // start wite -> 0 OK != 0 Systemerror
{ /1 cp->Fehler is initialized to O by the start function

printf("Wite started\n ");
i f(cp->Fehl er==0)

{
printf("Handl e nunber % \n", cp->Handl e);
whil e(!CP_pollwite(cp)) /1 0 OK != 0 Systemerror
{
i f(cp->Fehler == REQ NO_ERR)
{
printf("Data witten! \n");
br eak;
}
el se
/1 REQ WRKN, REQ UNDEF or PLC-specific error
printf("CpFehler = %\ n", cp->Fehler);
}
}
el se
printf("CpFehler = %\ n",cp->Fehler); [// general error (100-110)
}
el se

printf("No Start-wite\n");

CP_exit();
}
el se
printf("No CP486\n");
}
el se

printf("No Init");

328 VIPA Rev. 00/33

4 MS-DOS-Utilities for Solid-State disk operations

4.1 Solid-state disk driver 4-1
4.2 Formatting program for the SRAM solid-state disk 4-4
4.3 Solid-state disk generator 4-5
4.4 Solid-state disk loader 4-6
4.5 Sample applications for the solid-state disk 4-8
4.5.1 Implementing a solid-state disk 4-8
4.5.2 Implementing a FLASH-PROM solid-state disk 4-9
4.5.3 Creating program memory using EPROM's 4-11

4.5.4 Creating a FLASH-PROM solid-state disk with MS-DOS solid-state disk 4-13

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

4 MS-DOS-Utilities for solid-state disk operations

4.1 Solid-state disk driver

The BIOS contains the standard driver functions for the control of standard hardware components.
Any additional hardware or modified hardware must also be serviced by drivers. MS-DOS has
provisions for adding hardware drivers as required to avoid having to change the BIOS for every
change to the system hardware. Thisis achieved by means of an entry into the CONFIG.SY Sfile.

The CP3/4 provides a number of different solid-state disks.

. Chip-based solid-state disk (1C3, 1C4):
Die chip-based solid-state disk has a capacity of 256KB or. IMB. The chip-based solid-state
disk may be fitted with SRAM, EPROM, and PEROM.

. Memory-based solid-state disk boards
Memory-based boards are available with capacities of 128KB, 512KB and 1IMB. Cards are
fitted with OTP-ROM- or SRAM (up to board revision V17).

. Auxiliary solid-state disk board
Different auxiliary boards with capacities up to 7MB and fitted with FLASH-, SRAM- and
EPROM are available.

The driver for the respective solid-state disk must be installed into the system file CONFIG.SY Sto
make the disk available as a physical drive.

Different drivers are available;

SDRAM.SYS Driver for SRAM-based solid-state disks
Thisdriver provides read and write functions for solid-state disks.

SDROM.SY S Driver for solid-state disks using EPROM's, FLASH-PROM's and OTP-ROM's
Thisdriver can only be used to read from the solid-state disk.

SDPEROM.SYS Driver for solid-state disks using EPROM's

You can read from or write to this solid-state disk. The useful life of the
EEPROM's depends mainly on the number of write cycles (1.000 to 10.000 ,
depending on the type). For this reason we recommend that you install these
drivers only for a short period of time when the data is written to the
EEPROM's or when it is being modified. Subsequently the SDROM.SYS
driver should be used to avoid further write cycles.

The respective driver isinstaled into the CONFIG.SY Sfile asfollows:

devi ce=[d:][pat h] SDxxx. SYS[comment] [/ bb] [comment]
[/111T][comrent][/pp]

Rev. 00/33 VIPA 41

Solid-state disk driver Manual Toolbox

Parameter description

[c:][path] specifiesthedrive and the driver SDxxx.SY S, where
xxx defines the type of memory used for the solid-state disk. The following three
drivers are available, SDRAM, SDROM and SDPEROM.

[comrent] any text which must not contain the slash /" or the enter key.

/ bb base address of the solid-state disk (64 KB steps)
(e.g. /CO, corresponding to the physical start address CO0O000h).

JAREN size of the solid-state disk (1 KB steps)
(e.g. /256, corresponding to adisk capacity of 256 KB = 262144 byte).

/ pp parameter for SDPEROM.SY S: block size of the PEROM's
64 byte for AT29MCO010 IC's
128 byte for AT29C010 and for AT29MCO040 IC's
256 byte for AT29MC040 IC's

Examples:

Solid-state disk using IMB EPROM's
DEVI CE = \ DEVI CE\ sdr om sys base- address=/c0 si ze=/1024

Explanation The driver is located in the subdirectory "DEVICE" located on the boot drive. The
solid-state disk uses read-only memory. For this reason the SDROM.SY S driver was
selected. The base address of the solid-state disk is CO0000h. The size of the solid-
state disk is 1024KB = 1 MByte.

Solid-state disk using 256K B SRAM
DEVI CE = \ DEVI CE\ sdr am sys base-address =/c0 size=/256

Explanation The driver is located in the subdirectory "DEVICE" located on the boot drive. The
solid-state disk uses read-write memory. For this reason the SDRAM.SY S driver was
selected. The base address of the solid-state disk is CO0000h. The size of the solid-
state disk is 256K B.

Memorycard solid-state disk using IMB ROM:
DEVI CE = \ DEVI CE\ sdr om sys base- address=/80 si ze=/ 1024

Explanation The driver is located in the subdirectory "DEVICE" located on the boot drive. The
solid-state disk uses read-only memory. For this reason the SDROM.SY S driver was
selected. The base address of the memorycard slot is 800000h. The size of the solid-
state disk is 1024KB = 1 MByte.

42 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

Memorycard solid-state disk using 128K B SRAM:
DEVI CE = \ DEVI CE\ sdram sys base-address=/80 si ze=/128

Explanation The driver is located in the subdirectory "DEVICE" located on the boot drive. The
solid-state disk uses read-write memory. For this reason the SDRAM.SY S driver was
selected. The base address of the memorycard slot is 800000h. The size of the solid-
state disk is 128K B.

Note

If the solid-state disk was previously activated by means of the VIPA-SETUP, it does
not have to be installed in the CONFIG.SY Sfile. In this case the drive letter A: was
already assigned to the disk. Any additional entry in the CONFIG.SY S file would
assign a second drive letter.

It is possible to install a number of solid-state disks by repeating the entries in the
CONFIG.SY S file with the respective modifications to the parameters. In this way a
contiguous block of memory can be divided into a number of logical solid-state disk
drives.

The operating system installs al the drivers in the CONFIG.SY S file. Every storage
device receives a drive letter (e.g. D: or E: etc.). These drive letters are displayed on
the screen during the boot process of the system.

Every virtual drive extends the resident part of DOS by some 900 bytes which are
required for the driver.

Solid-state SRAM disks must be initialized by means of the FORMATSD program.
Where the RAM-disk has a battery backup, this operation is only required once,
otherwise the formatting operation must be performed each time the system is turned
on. RAM-disks with battery backup will retain data for a certain period of time after
the system has been turned off.

RAM-disks with battery backup are bootable disks if an operating system is installed
on the disk.

Rev. 00/33 VIPA 43

Formatting program for the SRAM solid-state disk Manual Toolbox

4.2 Formatting program for the SRAM solid-state disk

SRAM solid-state disks, much like anormal diskette,must be formatted before they may be used as
to store any data. The solid-state disk is formatted by means of the FORMATSD.EXE program. In
MS-DOS this program is executed as follows:

[c:][pat hl FORMATSD d: [/ D: xx] [/ 9]
These parameters are described below

[c:][path] driveand path that contains the FORMATSD program
d: drive letter for the solid-state disk drive that must be formatted

[D xx this parameter defines how much space should be reserved for the directory. xx
may have any value between 1 and 99. If this parameter was omitted the default
for 64 directory entriesis used.

/'S this parameter copies the system files from the MS-DOS boot drive to the solid-
state disk. This parameter is required if the new solid-state disk should be
bootable.

A This program erases all files from the specified drive!

The FORMATSD program must be executed before any other program or system command
(e.0. DIR) can access the solid-state disk drive. If thisis not done, it may not be possible to format
the solid state disk to the required disk size.

44 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

4.3 Solid-state disk generator

The SDGEN program generates the binary files for EPROM's, FLASH-PROM's and PEROM's of
the memory. This program is executed as follows:

[c:][path] SDGEN
The program requests the following parameters.

EPROM-sizein hit (0, 512 ,1M, 2M, 4M, 8M):

Here you must specify the size of the EPROM's
(e.g. IM for a 27C010 EPROM). The program creates files of the required
size for an EPROM-programmer. If the parameter is specified as 0O, the
program generates asinglefile as required by SDLOAD.

gesplittet (J/N) splitted files are required for 16 bit solid-state disks. The solid-state disk
of the CP3/4 PC is a 16 bhit disk, the memorycard is an 8 bit wide disk.
The 16 bit solid-state disk always contains 2 EPROM's (odd and even byte)
connected in parallel.

Quellaufwerk source disk for the solid-state disk
Zieldateiname destination file name for binary files used for programming the EPROM's.

Depending on the size of the EPROM's the program will generate a number of files with the
specified destination name. A sequential number is assigned to the extension of these files
(filename.xxx). ODD and EVEN portions of splitted files are identified by an O or an E in the first
letter of the extension (filename.Oxx or. filename.Exx).

Note

When a bootable solid-state disk must be created by means of the MS-DOS-RAM-disk
RAMDRIVE.SYS, the label must first be removed from the RAM-disk. This can be done
using the system program LABEL. Then you must copy the operating system files (10.SY'S,
MSDOS.SYS and COMMAND.COM) to the empty RAM-Disk. Now you may use the
SDGEN program to transfer the remaining files.

Before you transfer any data by means of SDLOAD you must first generate one large file by
means of SDGEN which can then be loaded using SDLOAD.

All direct transfers of MS-DOS-Ramdisks by means of SDLOAD require an intermediate
file.

Rev. 00/33 VIPA 45

Solid-state disk loader Manual Toolbox

4.4 Solid-state disk loader

The SDLOAD.EXE program is available for loading data records into the solid-state disk. This
loader must be used for FLASH-PROM's and for PEROM's. FLASH-PROM's can only be erased
completely before they are reloaded completely using this program. PEROM's can only withstand a
rather limited number of write cycles. If you were to use a standard DOS copy program to transfer
the data, certain sectors of the directory and elsewhere would be rewritten repeatedly. This would
reduce the useful life of these components drastically. In this case a complete data transfer is
advisable as every sector is only accessed once.

In MS-DOS the SDLOAD program is started as follows:

[c:][pat h] SDLOAD
where[c:] [pat h] specify the drive and the path for the SDLOAD program.

Once the program is started the following list of componentsis displayed on the screen:

The foll owi ng FLASH PROM s or EEPROM s/ PEROM s may be programed:
1 AnR8F010- 150, P28F010- 150
Am28F020- 150, P28F020- 150
AMR28F040- 150, P28F040- 150
AT28C010- 150
AT28C040- 150
AT29C010- 150
AT29C040- 150
AT29M2010- 150
9 AT29MC040- 150
Pl ease enter the nunber of the ROMtype you are using:

0 ~NO Ol WN

The respective components must be selected by entering the relevant number and pressing the enter
key.
Y ou must then enter the quantity of components:

Pl ease enter the quantity of the above conponents (2, 4, 6 or 8):
Here you must enter the number of IC's and press the enter key.

46 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

Thisis followed by the request for the base address for the solid-state disk board. Thisis entered as
a hexadecimal address:

Possible values are : 800000
840000
830000

FC0000

Y ou may now transfer the contents of afile that was generated by means of SDGEN or the contents
of alogical drive into the solid-state disk. In the case of a file the respective file name must be
entered. Where the data from a drive must be transferred the drive letter must be entered.

File names must be entered asfollows: [d:] [pat h] fi | e- nane
Drive letters must be entered as. d:

Files must have been created by means of SDGEN and must contain the entire contents of the drive
asasinglefile. These files may have aname like: SDISK.000

The capacity of the destination drive mustbe equal to or higher than the size of the source file or the
source drive.

modifications. A drive that is not bootable will not become bootable after the
transfer by means of SDLOAD. If thisis required you will first have to create
afileusing SDGEN.

i DLOAD transfers the contents of the drive or the specified file without

Rev. 00/33 VIPA 47

Sampl e applications for the solid-state disk Manual Toolbox

4.5 Sample applications for the solid-state disk

4.5.1 Implementing a solid-state disk

Purpose to create an SRAM solid-state disk at a base address CO0000h and with a size of 256K B
(consisting of 2 x 128KB SRAM's (IMBit SRAM'S)).

The board isfitted with 2 SRAM's of 128K B each and the jumpers are adjusted accordingly.

The system is booted from the fixed disk (drive C:). You require the programs SDRAM.SYS,
FORMATSD.EXE (located in the subdirectory C:\SD) and atext editor for these operations.

Enter the following lines at the end of the C:\CONFIG.SY Sfile:

DEVI CE = C:.\ SD\ SDRAM SYS base=/C0 si ze=/ 256

Reboot the system by simultaneously depressing the keys <CTRL>, <ALT> and . The
system will return the following messages during the boot procedure:

SILICON DISK installed asdrive D: . Vx.x Date RAMDISK FROM ADDRESS C00000h

The drive is now available and only needs to be formatted by means of the following command:

C.\SD\FORVATSD D. /D:32 /S

The FORMATSD.EXE program installs a DOS file structure on drive D: (SRAM-disk). The
directory provides space for 32 entries. Once the program has formatted the RAM-disk without
errors it may be used as MS-DOS-drive. The /S parameter transfers the system files to the SRAM-
disk so that the SRAM-disk may be used as boot drive.

48 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

4.5.2 Implementing a FLASH-PROM solid-state disk

Purpose to create a FLASH-PROM-solid-state disk at a base address CO0000h and with a size of
1IMByte (consisting of 4 x 256KB FLASH-PROM's (2MBit FLASH-PROMYS).

Here we use a solid-state disk board with 4 x 256KB FLASH-PROM's (2MBit FLASH-PROM's)
and 2 x 512KB SRAM's (4MBit SRAM's). The base address of the FLASH-PROM-disk is set to
C00000h and the size to IMB. Die base address of the SRAM-disk is set to 800000 h and it size is
also set to IMB.

The system is booted from the fixed disk (drive C:). You require the programs SDROM.SYS,
SDRAM.SYS, FORMATSD.EXE and SDLOAD.EXE (located in the subdirectory C:\SD) and a
text editor.

Enter the following lines at the end of the C:\CONFIG.SY Sfile:

C. \ SD\ SDRAM SYS base=/ 80 size=/1024
C. \ SD\ SDROM SYS base=/ C0 size=/1024

DEVI CE
DEVI CE

Reboot the system by simultaneously depressing the keys <CTRL>, <ALT> and . The
system will return the following messages during the boot procedure:

RAM DI SK installed as drive D. . VWx.y Date
RAMDI SK LOCATD AT 80 0000H

RAM DI SK installed as drive E:. Vx.y Date
ROVDI SK LOCATED AT CO 000OH

An image of program memory is created on drive D: (SRAM-disk). For this purpose the SRAM-
disk must first be formatted by means of the command

SD\ FORVATSD D: /D:32 /S

Then you must copy all the files required on the FLASH-PROM-disk to drive D: . This concludes
the creation of the FLASH-PROM-disk image and it may now be tested. For this purpose the solid-
state disk located at a base address 80h 0000h must be selected in setup.

The program SDLOAD is used to transfer the image to the FLA SH-PROM-disk using the following
parameters:

C. \ SD\ SDLOAD

Rev. 00/33 VIPA 4-9

Sampl e applications for the solid-state disk Manual Toolbox

The foll owi ng FLASH PROM s or EEPROM s/ PEROM s may be programed
1 Anm28F010- 150, P28F010- 150

Am28F020- 150, P28F020- 150

AM28F040- 150, P28F040- 150

AT28C010- 150

AT28C040- 150

AT290010- 150

AT29C040- 150

AT29M2010- 150
9 AT29M3040- 150

Pl ease enter the nunber of the ROMtype you are using: 2

Pl ease enter the quantity of the above conponents (2,4,6,8): 4

00 ~NO Ol WN

Pl ease enter the base address that you have set up on the solid-state disk
board. This is entered as a hexadeci nal val ue: C00000

You may either transfer the contents of a file that was generated by nmeans of
SDGEN or the contents of a logical drive to the solid-state disk

Enter the file nane or the drive letter: D

The contents of drive D: is transferred into the FLASH-PROM's. If the program terminates without
errors, the FLASH-PROM disk is available as drive E: . Both drives D: and E: have identica
contents, however, drive E: is write protected. If you change the BIOS settings so that the solid-state
disk at address COh 0000h is the boot disk, then the system may be booted from the solid-state disk.

4-10 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

4.5.3 Creating program memory using EPROM's

Purpose to create an EPROM-solid-state disk consisting of 2 x 512KB EPROM's.
Option 1: by means of a diskette

For this operation you require a formatted and bootable diskette (format a /s). The disk must be
formatted on a computer that is running the same operating system that will be installed on the
solid-state disk. Next you must also transfer all the files that should be loaded into the solid-state
disk to the diskette. You must ensure that the 1,44MB diskette contains only those files that are
definitely required for the solid-state disk. This master is then used to create the files for the
2 EPROM's. For this purpose you must start the program SDGEN on your development computer
and enter the following parameters, provided that the diskette with the data for the solid-state disk is
located in drive A:

C. \ SD\ SDGEN

EPROM si ze in bit (0,512,1M 2M 4M 8M 4M
SPLIT I N ODD- EVEN (J/ N) N
SOURCE DRI VE (A F:) A
DESTI NATI ON FI LE NAME (8 char. max.) EPROM

The program creates the files EPROM.0O00 and EPROM.EQO. These consist of binary files for the
EPROM programmer. Each file is intended for a single EPROM. These EPROM's are programmed
and they are then inserted into the EPROM sockets as follows:

up to V32 EPROM EOO in I C4 (even)
EPROM Q00 in I C3 (odd)
from V33: EPROM EOO in 1 C2 (even)
EPROM Q00 in I Cl1 (odd)

If you now select the solid-state drive ROM at address CO0000h as BIOS drive A:, then you may
boot the system from the solid-state disk. Once the system is turned on and booted this storage
moduleis available asdrive A:.

Note
The following procedure must be used to create an update for the solid-state disk:

Once the new file has been transferred to an existing diskette, the diskette must be
defragmented (start Defrag). The defrag operation stores the files in contiguous form on the
diskette. Spaces that exist between blocks of data are overwritten. These records are then
transferred byte by byte to the solid state disk. In this way the data occupies as little space as
possible on the solid-state disk and all available memory is used effectively when the IMB
boundary of the solid-state disk is reached.

VIPA

Rev. 00/33 4-11

Sampl e applications for the solid-state disk Manual Toolbox

Option 2: by means of the SRAM-disk
Install an SRAM-disk consisting of 2 x 512KB SRAM's (4MBit SRAM's) on the PC-board and set
the jumpers accordingly. Set the base address to CO0000h.

The system is then booted from fixed disk C:.. You require the programs SDROM.SYS,
SDRAM.SYS, FORMATSD.EXE and SDGEN.EXE (located in the subdirectory C:\SD) and a text
editor. Use the text editor to enter the following lines to the end of the C:\CONFIG.SY Sfile:

DEVI CE = SD\ SDRAM SYS base=/ C0 si ze=/1024

Reboot the system by simultaneously depressing the keys <CTRL>, <ALT> and . The
system will return the following messages during the boot procedure:

RAM DI SK installed as drive D. . Vx.y Date

RAMDI SK LOCATD AT CO0000h

The master for the memory is created in drive D: (SRAM-disk). The SRAM-disk must first be
formatted by means of the command

SD\ FORVATSD D: /D:32 /S

Now you must copy the respective data to drive D:. This completes the creation of the EPROM-disk
and it may be tested. For this purpose you must change the setup to the solid-state disk ROM
located at address CO0000 and delete the following line from the CONFIG.SY Sfile:

DEVI CE = SD\ SDRAM SYS base=/ CO si ze=/ 1024

This master may now be used to create the 2 EPROM's. Start the SDGEN program and enter the
following parameters:

C. \ SD\ SDGEN

EPROM SI ZE in bit (0,512,1M 2M 4M 8NV : 4M
SPLIT I N ODD- EVEN (JIN: J
SOURCE-DRIVE (A F!) D
DESTI NATI ON FI LE- NAME (8 char. Max.) : EPROM

The program creates the files EPROM.000 and EPROM.EQO. These consist of binary files for the
EPROM programmer. Each file is intended for a single EPROM. These EPROM's are programmed
and they are then inserted into the EPROM sockets as follows:

up to V32 EPROM EOO in 1 C4 (even)
EPROM Q00 in I C3 (odd)
from V33: EPROM EOO in 1 C2 (even)

EPROM Q00 in | CL (odd)

If you now select the solid-state drive ROM at address CO0000h as BIOS drive A:, then you may
boot the system from the solid-state disk.

Once the system is turned on and booted this storage module is available as drive E..

412 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

4.5.4 Creating a FLASH-PROM solid-state disk with MS-DOS solid-state
disk
Purpose to create a 2 MByte FLASH-PROM-solid-state disk on the solid-state disk board at a

base address CO0000h (consisting of 8 x 256KB FLASH-PROM's (2MBit FLASH-
PROM'S)).

Here we use a solid-state disk board with 8 x 256KB FLASH-PROM's (2MBit FLASH-PROM's).
The base address is set to C00000h and the size to 2MB.

The system is booted from the fixed disk (drive C:). You require the programs SDROM.SYS,
SDGEN.EXE, and SDLOAD.EXE (located in the subdirectory C:\SD) and atext editor.

Enter the following lines at the end of the C:\CONFIG.SY Sfile:

C: \ DOS\ RAMDRI VE. SYS 2042 512 64 |/ E
C:. \ SD\ SDROM SYS base=/ CO si ze=/ 2048

DEVI CE
DEVI CE

Reboot the system by simultaneously depressing the keys <CTRL>, <ALT> and . The
system will also display the following messages during the boot procedure:

Microsoft RAMDrive Version x.y - virtual drive D:
Disk size: 2042K
Sector size: 512 Byte
Block size: 1 Sector
Number of directory entries: 64
ROM SILICON DISK installed asdrive E:.. Vx.y Date

Drive D: is used as the master for the ROM-solid-state disk. For this purpose the label must be
removed as this occupies space that is required by the operating system. The respective command is:

LABEL D

The following message is displayed:

Vol une in drive D is Ms-RAMDRI VE
Vol une | abel (11 characters, ENTER for none)?

Do not enter a volume label but simply press the ENTER key. You will now be prompted whether
you:

Del ete current volune | abel (Y/N)?

Answer "Y" and press the ENTER key.

Rev. 00/33 VIPA 413

Sampl e applications for the solid-state disk Manual Toolbox

The LABEL program terminates (MS-DOS prompt). Next you must copy all the required files to
drive D: (adhere to the following sequence if the drive must be bootable):

1. lo.sys

2. Msdos.sys

3. command.com

4. remaining files and directories in any sequence

The lo.sys and Msdos.sys files are hidden files and they can therefore not be
transferred by the COPY command of DOS

Files may be transferredby means of the DOSSHELL or Norton Commander. At this point the
master for the FLASH-PROM is complete and the program SDGEN is executed with the following
parameters:

C: \ SD\ SDGEN
EPROV SI ZER in bit (0,512, 1M 2M 4M 8M: 0O
SPLIT I N ODD- EVEN (J/IN: N
SOURCE DRIVE (A F:) . D
DESTI NATI ON FI LE NAME (8 char. max.) : EPROM

The program creates a file caled EPROM.000. (A note foe experts: SDGEN creates the bootsector
and both FAT entries when it generates the file. The disk is thus bootable). The file may then be
transferred to FLASH-PROM by means of the SDLOAD program. The program SDLOAD is
executed with the following parameters:

414 UViPa Rev. 00/33

Manual Toolbox MS-DOS-Utilities for solid-state disk operations

C.\ SD\ SDLOAD

The foll owi ng FLASH PROM s or EEPROM s/ PEROM s may be programed:
1 AnR8F010- 150, P28F010- 150
Am28F020- 150, P28F020- 150
AmMR28F040- 150, P28F040- 150
AT28C010- 150
AT28C040- 150
AT29C010- 150
AT29C040- 150
AT29M2010- 150
9 AT29MO040- 150
Pl ease enter the nunber of the ROMtype you are using: 2

0 ~NO Ol WN

Pl ease enter the quantity of the above conponents (2,4,6,8): 8

Pl ease enter the base address that you have set up on the solid-state disk
board. This is entered as a hexadeci nal val ue: C00000

You may either transfer the contents of a file that was generated by neans
of SDGEN or the contents of a logical drive to the solid-state disk

Enter the file nane or the drive letter: C.\EPROM 000

The contents of the file C:\EPROM.000 is transferred into the FLASH-PROM's. If the program
terminates without errors, the FLASH-PROM disk is available as drive E: . Both drives D: and E:
have identical contents, however, drive E: iswrite protected. If you change the BIOS settings so that
the solid-state disk at address COh 0000h is the boot disk, then the system may be booted from the
solid-state disk.

Rev. 00/33 VIPA 4-15

Sampl e applications for the solid-state disk Manual Toolbox

416 UViPa Rev. 00/33

5

Auxiliary programs

5.1 CPLINK program for coupling computers
5.1.1 General
5.1.2 Function description
5.1.3 Interconnecting cables

5.2 Graphic display program for the PLC process image

5.3 System test program

5-1
5-1
5-2
5-4

5-5

5-6

Manual Toolbox Auxiliary programs

5 Auxiliary programs

5.1 CPLINK program for coupling computers
5.1.1 General

This program may be used to transfer files via a seria interface into and from the CP3/4. It is thus
possible to enter data and programs into CP3/4 modules without a diskette drive or an exchangeable
memory card. Any recorded data can also be retrieved viathe same link..

Available commands appear on the status line (bottom line). Commands that are "grayed out” are
not available. Other key combinations and shortcuts are available from the menu system.

Y ou can access the menu line (top line) by means of <F10>. From here you can select the required
menu entry using the cursor keys and the enter key. A quicker method is to select the menu item by
means of the key combination <Alt+selection-key>. In this case the selection-key is the highlighted
capital letter. This displays a sub-menu from where the required command may be selected by
means of afurther selection key.

The file list windows are available for processing directories. Once the link between the two
computers has been established you may switch between the two windows by means of the <Tab>
key. The active window is denoted by a double frame. Here you may select files by means of the
<cursor keys> (<space key>) and you can access subdirectories (<enter key>).

Rev. 00/33 VIPA 51

CPLINK program for coupling computers Manual Toolbox

5.1.2 Function description

Info
Provides information on the version number of the program and the remaining memory space.

Ende (quit)
Terminates the program and disconnects any existing link.

Selektieren (select)
Marks all the files that match the search criteria entered into the mask.

Unselektieren (deselect)
Deselects all the files that were selected by means of the mask.

Betrachten (view)

The file selected by the selection bar is displayed. Data may be displayed in hexadecimal or in
ASCII.

K opieren (copy)
If the program is linked to a second computer the selected files are transferred to that computer.

Umbenennen (rename)
Modifies the name of the selected file.

L dschen (delete)
The selected file is deleted after the operator confirms the action.

L aufwerk wechseln (changedrive)
Y ou may select adifferent drive from alist of drives.

Verzeichniserstellen (create a new directory)
This command creates a new subdirectory.

Verzeichnis umbenennen (rename subdirectory)
Modifies the name of an existing subdirectory.

Verzeichnis|éschen (delete subdirectory)
Deletes an empty subdirectory from the directory tree.

52 VIPA Rev. 00/33

Manual Toolbox Auxiliary programs

Verbindung aufbauen (connect)

Here you may select the interface (COM1/COM2) and the operating mode of the computer
(active/passive). It is also possible to establish a slower connection. This may be necessary when a
relatively slow computer is being used or in cases where the link suffers from interference. You
must always connect an active computer to a passive computer. The active computer is under the
control of the user.

Verbindung unter brechen (disconnect)
The link between two computers is terminated.

Optionen einstellen (options)
Here you may select the number of display lines and the color.

Dateibetrachter (view file)
This function may be used to view the contents of a selected file.

Change viewer <F2>
Scroll through text: <Up/Down>
<Left/Right>
Page by page <Page Up/Page Down>
Start/end of line <Home>, <End>
Start/End of file <Ctrl+Page Up/Down>
Quit viewer <ESC>

Kommandozeilen-Parameter (command-line parameters)

Y ou may enter connection parameters as command-line parameters when you start the program.
The respective command is as follows:

CPLINK [COMX A/P SIL]

where COMx defines the interface (x: 1 or 2) and A/P defines the operating mode (active or
passive). The third parameter defines the data rate, i.e. whether the data is transferred faster or
slower. If you select to enter command-line parameters, you must always enter all three parameters!

Rev. 00/33 VIPA 53

CPLINK program for coupling computers

Manual Toolbox

5.1.3 Interconnecting cables

Serial interfaces on PC's may be provided by a 9-pin or a 25-pin plug. The following cables are
required to link computers for data transfers viathe serial interface:

RD:
TD:
SG:

DTR:
DSR:
RTS:
CTS:

QO J o B O Ww N

L1 L
1]

Conput er-2

TD:
RD:
SG:
DTR:
DSR:
RTS:
CTS:

O J o b 0N W

(2)
(3)
(7)
(20)
(6)
(4)
(5)

The numbers above specify the pin of a 9-(or 25)-pin connector.

5-4

VIPA

Rev. 00/33

Manual Toolbox Auxiliary programs

5.2 Graphic display program for the PLC process image
The current version of the SSKOP program is available to display the process image from the
processor of the PLC.

The size of the MS-DOS program S5KOP.EXE with the version 1.1 dated 8.4.1991 is 75677 bytes.
The PLC must contain the VIPA handler module FB1 (from CP386COM or CP486COM) for the
CP3/4.

From MS-DOS the program is started by means of the command "S5KOP <Return>". The program
then displays an introductory screen which may be removed by depressing a key on the keyboard.
Y ou are now presented with the main menu.

The menu item "process image" is activated by the <F1> key. Here you may select a cyclic display
by means of function keys:

<F1> display the inputs

<F2> display the outputs
<F3> display theflags0..127
<F4> display the flags 128..255
<F5> display thetimers

<F6> display the counters
<F8> display the page frame

The display cycle may be paused by means of the pause key <F7>. The pause can be terminated by
depressing <F7> again.

Once you have selected a process image by means of the keys F1 .. F6 or F8, the selected process
image is displayed until you change the selection.

The display is "frozen™ when you depress the pause key <F7> ("Pause") until you press another key.

You can quit from the process image menu and return to the main menu by pressing <ESC>. Here
you can press <ESC> again to return to the DOS command line.

Rev. 00/33 VIPA 55

System test program Manual Toolbox

5.3 System test program

The system test program is available as an optional diskette containing the original Quadtel software
(Software pack SW583, MS-DOS diskette, 3.5", 720KB). This software is sold for single user
applications only, i.e. alicenseisrequired for each and every system where the driver will be used.

This software pack contains a diagnostic program for the CP3/4. The diagnostic software runs under
MS-DOS and provides a number of tests for all the important system components. These tests may
be executed individually or as a batch.

56 VIPA Rev. 00/33

Annex

Manua Toolbox List of tables

Annex

A List of tables

Tab. 1-1: Overview bank function by CP38BCOMccceieeiiiieiieie e 1-1
Tab. 1-2: Overview MS-DOS SyStem fUNCHIONScoiiieeiieieseeree et 1-6
TaAD. 2-1: ROULINES.......ciiuitiiiiiti sttt sttt b ettt et e b et e s b bt s bt bt e bt et e e e s et e neesbenbennenneas 2-1
Tab. 2-2: Overview of the typesthat where tested...........ocoieriiieiiie e 2-3
Tab. 2-3: Runtime of the FB in the different CPUS..........cccociirnineee e 2-3
Tab. 2-4: Parameter list for starting FBL/FBLOccooiiiiiiiieseeeee e e 2-4
Tab. 2-5: Parameter list for starting FB2/FBL2ooov oottt 2-5
Tah. 2-6: FUNCLON AESCITPLION..... ittt sttt e bt sre e e e e e 2-9
Tab. 2-7: Element types fOr ProCESS IMBOE.......ccueiieiereerieeeeseeseeseeseesee e eeesreesteseesneeneesseenseeneas 2-18
Tab. 2-8: Error numbers of the CP for pageframes 2, 3and 7........ccocevereeneeneneneese e 2-19
TaAD. 3-1: ROULINES.....c.ciiitiriisti ettt sttt et e b et s b bt s bt bt e bt e st e e e s et e neesbenbennenneas 31
Tab. 3-2: Parameter list for Starting FBLooiiieiee e e 3-2
Tab. 3-3: Parameter list for Starting FB2ooovi ettt 3-3

Rev. 00/33 VIPA A-1

List of tables

Manua Toolbox

A-2

VIPA

Rev. 00/33

Manual Toolbox Index
B Index
A QELAALE ... 1-29
get detailed error...... ..o veeereierceereereee 1-31
Auxiliary program GEL diSK . 1-20
Graphic display of the PLC-processimage.......... 5-5 get file POINterccovveeieeicee e 1-27
AUXIliary Programs.........ccoeeeereeeneneseseseeeseseeeens 51 et MS-DOSVEISIONccoeveveriereeiesieeee e 1-30
CPLink for coupling COMpULErS.........cccveruerennens 51 GELHIME...eieciie e 1-29
System test Program..........coeevereeerieeienenenennens 5-6 OPEN FIl@ i 1-25
physically writefile ..., 1-25
C
Program eXECULEcceruereereesieeseee e eee e 1-30
CP3BBCOM ..ottt 1-1 read file or device........coeoviieininciecnee 1-28
access by WINDOWS..........cccoovvevnenenncenieeens 1-74 rename file. ... 1-26
CUNCHIONS.....cciieeicieeee e e 1-61 SEIECt AISK ..o 1-20
abort all JODS......ccovveieiveecere e 1-67 Set current dir€Ctory........ecveeveeereenieeniesiene 1-22
CONSEANES.vevietieieie ettt st eaeas 1-68 Set file POINLEN......coeeeeie e 1-27
CP status Callcoeeevereeiericeeincceecree 1-61 writefileor device........ooevviveiniccine, 1-28
read area Of processimage........ccoceevveruevnnns 1-67 parameterization by handling modules............... 1-19
read block fromPLC.........cccccevveveiecieerene 1-63 pascal fUNCLIONS..........coerierierine e 1-49
read job Statusccceeveevierie e 1-66 abort all JobS........ccoeiiice e 1-54
read single element from PLC............ccccceuee. 1-62 CONSEANES....coviiicie e 1-56
read status of processimage.........c.ccoveeerenes 1-67 CP Status Callcccovvviciiiciiicicce 1-49
write block iNtO PLCccccvevececeeecee, 1-65 read area of processimage........c.ccoceeveeveereenne. 1-55
writesingleelement to PLCcccccevenneen. 1-64 read block from PLCcoceoviiiieininen 1-51
CPjobsforbanks2,3and 7......c..ccccevvevreninnnne 1-35 read job Status.........ccvveveiiiiene 1-54
iNStallation..........cccceeeeecieeeeee e 1-36 read single element from PLC 1-50
OVENVIBW....c.veiecvieeeie ettt et 1-35 read status of processimage........ccceveveereenne. 1-55
driver fUNCLIONS........ccovriciree e 1-39 WIite DIOCK tO PLC ..o 1-53
abort all JODS......cccovveeeeieecee e 1-46 writesingleelement to PLCccocecvviennee. 1-52
CP status Callcoeoveeenericiinceecree 1-39 PLC JODSTOr CP.....cveeeeereieceeie e 1-6
EITON NUMDENS.....cvecuieieeiecie ettt 1-48 conceptsfor banksOand 1cccceeeeveeiennne 1-7
read area of processimage.........ccccevveerernnne. 1-47 OVEIVIBW ...t 1-6
read block fromPLC.........cccccecveveieciecrenee, 1-41 parameterizationcoceeevererenesieeieene e 1-9
read job Statusccceeveevieree e 1-44 processing aread job ... 1-8
read single element from PLC...........ccccceue. 1-40 Processing awrite job..........coceveeerereenereenenn 1-7
read status of processimage...........ccocevveeennen. 1-46 processimagein bank 7ccocceeveveneenenienens 1-73
Write block toO PLCcoeiiiiiie e 1-43 CP486COM
writevariableto PLC ..., 1-42 Error message
file Names. ..o 1-19 FB L. e 2-4
General desCription.........occeeeeeeceeieereene e 1-1 FB2.o 2-5
handling ModUles..........cccoeii i 1-9 Note
FB3 (SEND)...covviieieesieriee e 1-9 Communication driVerc.ccoeeevereceneneenens 2-6
FB4 (CONTROL) ...oovrveireirienirieesesiee i 1-12 CPABBCOM ...ttt 2-1
FB5 (FETCH) ..o 1-14 C- functions
FB6 (RECEIVE)ccoiiiiieieeeeeeeiee 1-16 Interrogate request status............ooeveeeecverennne, 2-41
MS-DOS driver programceceeeeeeereeresseneenes 1-2 Read processimage area..........c.coeevrervennnne 2-42
datain MEMmMONYcccovirire e 1-5 Terminate page frame requests...........cccceeeee 2-42
driver installationccocooeoevvceinncnensee 1-2 C-TUNCLIONS.....cvieeieece s 2-36
driver OptioNS.......cocveierere e 1-3 CoNSLANES ..o 2-30; 2-44
reserved iNtErrUPLS.oovevererereeie e 1-4 Datatype for block elements.................... 2-45
MS-DOS fUNCLIONS.......cccorvruinerieieerinieesieeeseseeas 1-20 Element Size.......cocoovevcneneeece 2-44
ClOSEfil€. e 1-25 Element types for block elements............. 2-45
Create direCtory... ..o veeereeieeie e 1-21 Element types for processimage............... 2-45
create New file....ccovvice e, 1-24 Element types for single elements....2-30; 2-44
create/rewrite fileooveeeeeciecceeee e 1-23 Identifier for request status...........ccceeeee. 2-45
delete direCtory......oooveverereneeeee e 1-21 CP-Status reqUESt ... 2-36
deletefile..iiiiiieceecee e 1-26 Process images-storage.cooevereereeeeneennn. 2-50
general INtErTUPLoceevveveeeeiseeeseeeeenes 1-34 Read ablock fromthe PLCcoceviineee. 2-38
Rev. 00/33 VIPA B-1

Index Manual Toolbox
Read asingle element fromthe PLC 2-37 Read processimage area.........covvveeeereereenennnenns 2-18
Standard functioncccceeevveierceevece s 2-43 Read process image Status.........cccoevveveereereenenes 2-17
Write asingel elementtothe PLC................ 2-40 Read the status of arequestcccceeeevevereernene 2-15
Writeasingletothe PLCcccceovvveveneinnne 2-39 Representation of data

C-funktions INTNEPC ..o 2-8

Constants INTHEPLC....ciiiece s 2-8

Element Size......cccovvvvvvveveeeceesee s 2-30 REQUESES ...t 29
Changesto the V2.0 driver V2.0......c.ccoeevvvevennnne 2-3 FUNCLIONS ... 29
Communication driver COM.........ccccvvrererenienenn. 2-6 OVEIVIBW ..t 2-9
CP StatuS reqUESEc.vevvveeeeeeeie et 2-10 ROULINES.....ceiiecirciese e 2-1
Datatransfer Runtime of the FB ... 2-3

REPresentation.........cceeeevereereresieseseeeeeeeens 2-8 Software interrupts for DOS.........cccceccevvrierennnne. 2-7

Data transfer Terminate read and write requests..........ccoevene.. 2-17
ProCeaure........ccovveerineresese e 2-8 Writeablock tothe PLC.........cccviveiiivciniee 2-14
Driver functions using the software interrupt 2-10 Write ablock tothe PLC.........cccoovevevvveveniene, 2-14
Error numbers of the CP........cccoevvinenninieen, 2-19 Writeavariabletothe PLC..........ccccooevvineenn. 2-13
General desCriptioncccveeeeeeveniene e 2-1 CP486COM
Handler module Installation communication driverc.ccceuenee.. 2-6
0 2-4 CPABBNT ...t neeeas 3-1
FB2..oieeerere e 2-4 CP-fUNCHIONS. ... 3-8
Installation page frame software...........cccceevevenee. 2-4 () SRS 3-8
Interface C-fuNCionS.........c.covevvvevercnerieicnieene 2-36 General Call......ooeiviveiri 3-15
MSDOS- driver program.........ceeeeeeeeeeeseeseesennens 2-6 INItTAlIZING. .. e 3-8
Note Poll write complete.........cceoeveveveninirniennenns 313

Read asingle element fromthe PLC 2-11 = o (SRS 39

Write ablock tothe PLC..........ccocovvveveeciennne 2-14 Read complete checkccovevevevereiecienene, 3-10

Write avariabletothe PLC........cccccevvvennne 2-13 Stop aread operation.........ccceeverevesereeneenns 311

Note Stop write operation...........ceeeverevvsereenenes 314
C-fUNCLIONS ... 2-36 IR 3-12
Read ablock fromthe PLCcccoveeveeenee. 2-12 CP-Kachel parameter

Operationin aWINDOWS environment 2-51 IS T 3-18

Operation in aWINDOWS-NT environment....... 35 CP-page frame parameter

Overview of tested typesS.....cccovvvvvvceeerreereereseenen, 21 S 317

Parameter list Datastructuresinthe PLC.........cccooveevennicnienen. 31
FBL oo 2-4 DEfiNItIONS......coeeeriieiriier e 3-21
FB2 s 2-5 Data type for block elements.........c.cccve..... 3-22

Parameter list Data type for single elements.................c....... 3-22
FBZ .. 2'5 Element typeSfor blOCk elerﬂents 3_22

Pascal fuNCtions.........c.coveevereciie e 2-20 .

Constants El ement types for single elements................ 3-21
Data type for block elements.................. 2.31 Fupct.| ON NUMDBEIS ... 321
Element types for block elements........... 2.31 Descri ptl_or_1 pf the structures..........ccocvveveveeennnne 3-19
Element types for processimage............. 2-31 Error definition
Flag fOr request SatUS.ooocoovrorooeo 2.31 Page f_ra_rr)e 28007 oo 323

CP SatUS FEGUESt o.rroeeeeeeeeeees oo 2.20 Error definitions.......cccccevevieveveceesece e 321

Read ablock from the PLCccoo.oovveennne. 2-22 Example

R%d as ngle dement from the PLC 2_21 FBl .. 3'2

Read Process iMage A€a.......oooorovrrr 2.26 FB2..oceiseee et 3-2

Read process image Status...............oovo..... 2.26 EXaMPIES ..o 3-27

Read reqUest StaUSo.oo oo 2.5 Handler modules..........cocevevivieivneeiece e 3-2

Standard funCtion '' 2_27 FBl .- AL 3'2
PrOCEUUIE. ..o e 2-28 Installation page frame ariver ..., 36

Terminate page frame requests................. 2.26 Installation page frame software..........c..cceevevvenene 3-2

Writeablock tothe PLC........ccccviveiiinnns 2-24 Note .

Write asingle element to the PLC................ 2-23 CP-functions

Process image area 2= o [39
Read €lement typPesS.......ccoveveveeevereeeseeeeeeeeeens 2-18 Read COMPIELE CHECK wovvvvessvvssnrissnnsssnes 3-10

Read ablock fromthe PLC ..o 2.12 ertg ... 312

Read asingle element fromthe PLC.................. 2-11 Parameter list

B-2 VIPA Rev. 00/33

Manua Toolbox

Index

0 TSR 3-2 SRAM-solid-state disk
o 2 3-2 [0l 07 1] o [4-4
Representation of datain memory..........ccccceveeee. 34
. S
ROULINES ..ottt 31
Visua Cinterfaceccoovvvvvvvvereeecerese s 3-7 Sample appliCationS.........ccecvereveriesesese e 4-8
CPLink Creating a FLASH-PROM by means of MS-DOS
Function description...........cccveveerenecninencneenes 5-2 N 1 4-13
GENENAl...ceiceee e 51 Creating an SRAM-diSKccccevvvivvviineneeiens 4-8
Interconnecting Cables.........cccovvevrenneninencnine 5-4 Creating program memory using EPROM's....... 4-11
M Implementing a FLASH-PROM-solid-state disk.. 4-9
Solid-state disk drivercccoveveenieneieneneeseeeiens 4-1
MS-DOSULIITIES.....oceeeeeee e 4-1 Auxiliary boardccceeeeevenienn e 4-1
Solid-state disk Operations.........cccceveererererenenns 4-1 Chip-based solid-state disK.........cccevvvrvrerceeieenns 4-1
N EXaMPIES. ... 4-2
parameter desCription.........cccccvvveveevieresceeeereereens 4-2
Note Solid-state disk generator.........coevvereeerereeesenennens 4-5
Creating FLASH-PROM by means of MS-DOS- Solid-state disk 10adercccvvveinineieneneereine 4-6
RAM L 4-14 Solid-state disk-driver
Creating program memory using EPROM's....... 4-11 OVEINVIBW ...t 4-1
solid-state disk driver SRAM-s0lid-state disK......cceoerrereeeriereenieseeesieeeiene 4-4
EXaMPlES.....c.coveeiece e 4-3 FOrMALtiNGcoveeeeireeeeiereeee e 4-4
solid-state disk generatorcccceeeverererernnnens 4-5
solid-state disk loaderoccoovvevererenninece 4-7
Rev. 00/33 VIPA B-3

Index Manua Toolbox

B-4 VIPA Rev. 00/33

	00_Manual_Toolbox_hb74e
	About this manual
	Contents

	01_Linkage_by_CP386COM
	1.1 General description
	1.2 PLC Jobs for CP (Functions for Bank 0 and 1)
	1.3 CP-Jobs for PLC (Functions for Bank 2, 3 and 7)
	1.4 Operation of the CP386COM in a WINDOWS environment

	02_Linkage_by_CP486COM
	2.1 General description
	2.2 Installation of the page frame software
	2.3 CP486-Requests for PLC (Page Frame 2 and 7 Functions)
	2.4 Operation of the CP486COM in a WINDOWS environment

	03_Linkage_by_CP486NT
	3.1 General description
	3.2 Installation of the page frame software
	3.3 Operation of the CP486COM in a Windows-NT environment

	04_Utilities_for_Solid_State
	4.1 Solid-state disk driver
	4.2 Formatting program for the SRAM solid-state disk
	4.3 Solid-state disk generator
	4.4 Solid-state disk loader
	4.5 Sample applications for the solid-state disk

	05_Auxiliary_programs
	5.1 CPLINK program for coupling computers
	5.2 Graphic display program for the PLC process image
	5.3 System test program

	06_Annex
	A List of tables
	B Index

